sábado, 31 de dezembro de 2011

Anel gigante contendo buracos negros

O Arp 147, localizado a 430 milhões de anos-luz da Terra, contém os restos de uma galáxia espiral (à direita) que colidiu com a galáxia elíptica à esquerda, conforme visto na imagem a seguir obtida pelos telescópios Hubble e Chandra.

ARP 147

© Hubble/NASA (ARP 147)

Esta colisão produziu uma onda crescente de formação de estrelas que aparece como um anel azul com 30.000 anos-luz de diâmetro, contendo grande quantidade de estrelas massivas jovens. Estas estrelas durante sua evolução com cerca de alguns milhões de anos explodem como supernovas, deixando para trás estrelas de nêutrons e buracos negros.
Uma fração das estrelas de nêutrons e buracos negros terão estrelas companheiras, e podem tornar-se fontes brilhantes de raios-X, que são detectadas pelo telescópio de raios-X Chandra. As nove fontes de raios-X espalhadas por todo o anel no Arp 147 são tão brilhantes que elas devem conter buracos negros, com massas da ordem de 10 a 20 vezes maiores que a do Sol.
Uma fonte de raios-X também é detectada no núcleo da galáxia em vermelho do lado esquerdo e provavelvemente é devida a existência de um buraco negro supermassivo. Outros objetos não relacionados com o Arp 147 também são visíveis: uma estrela no primeiro plano no canto inferior esquerdo da imagem e um quasar de fundo como a fonte na cor rosa acima e à esquerda da galáxia vermelha.
Observações no infravermelho com o telescópio espacial Spitzer da NASA e observações no ultravioleta com o telescópio Galex (Galaxy Evolution Explorer) da NASA permitiram estimativas da taxa de formação de estrelas no anel. Estas estimativas combinadas com o uso de modelos para a evolução de estrelas binárias possibilitou inferir que a formação de estrelas mais intensa provavelmente terminou há cerca de 15 milhões de anos atrás.

Fonte: NASA

sexta-feira, 30 de dezembro de 2011

Exoplanetas ao redor da estrela HR 4796A

Uma equipe de astrônomos do Projeto SEEDS (Strategic Exploration of Exoplanets and Discs by Subaru), liderada pelo astrônomo japonês Motohide Tamura, com auxílio do telescópio japonês Subaru, localizado no Havaí, descobriu a possível presença de vários exoplanetas dentro do anel de poeira da estrela HR 4796A.

anel de poeira ao redor da estrela  HR 4796A

© NAOJ (anel de poeira ao redor da estrela  HR 4796A)

A jovem estrela de apenas 8 milhões de anos é parte de um sistema estelar binário composto por uma estrela branca da sequência principal e uma anã vermelha, localizada a cerca de 220 ​​anos-luz do Sol na constelação de Centaurus. A HR 4796A é cerca de duas vezes mais massiva e vinte vezes mais luminosa que o Sol.

Embora o Telescópio Espacial Hubble tenha levado outro grupo de astrônomos a suspeitar da presença de exoplanetas, esta imagem do Telescópio Subaru confirma a existência deles; e vai melhorar a compreensão da relação entre a poeira ao redor da estrela e a formação de planetas.

Este desequilíbrio na órbita de poeira é provavelmente causado pela ação, até agora despercebida, de planetas maciços que podem ter sua órbita dentro do anel. Além disso, a imagem do anel revela a presença de poeira fina que se estendem além do órbita principal.

A explicação mais provável é que esses planetas escondidos no anel circundante atraiam a poeira por sua força gravitacional, que desequilibra a órbita do anel à medida que aumentam sua massa. Simulações de computador mostraram que as marés gravitacionais podem mudar a forma de um anel de poeira, e os resultados de um outro anel de poeira excêntrico em torno da estrela Fomalhaut pode ser evidência observacional para o processo.

Se os instrumentos atuais ainda não são capazes de detectar planetas em torno de HR 4796A, é certamente pelo fato da sua massa ser muito baixa. No entanto, a imagem do telescópio Subaru deu aos cientistas evidências de sua presença por sua influência sobre a poeira circunstelar.

Esta imagem foi um verdadeiro desafio técnico, é o resultado da correção da turbulência atmosférica pelo sistema de óptica adaptativa do telescópio para encontrar nitidez das imagens e da aplicação de uma técnica de processamento sofisticado para eclipsar a luz das estrelas e fortalecer a débil luz refletida a partir do anel de modo que se torna visível.

Fonte: National Astronomical Observatory of Japan

quinta-feira, 29 de dezembro de 2011

Névoa laranja e azul em Titã

A imagem abaixo foi realizda pela sonda Cassini da NASA apontada para a região polar sul da maior lua de Saturno, Titã, e mostra uma depressão dentro das camadas de névoa laranja e azul perto do polo sul do satélite.

Titã

© NASA/Cassini (Titã)

As camadas de névoa de alta altitude da lua aparecem em azul, enquanto que a principal névoa atmosférica aparece em laranja. A diferença na cor pode ser devido ao tamanho das partículas que formam a névoa. Provavelmente, se essa for a causa, a névoa azul é formada por partículas menores do que a névoa laranja.

A camada de depressão ou atenuada aparece na área de transição entre a névoa azul e laranja a aproximadamente um terço do caminho da borda esquerda da imagem. O polo sul da lua está na parte superior direita da imagem. Essa imagem sugere que o vórtice do polo norte de Titã, tem rotação de norte para sul.

O polo sul de Titã está em sentido à escuridão à medida que o Sol avança em direção ao norte a cada dia que se passa. A camada superior de névoa na atmosfera de Titã ainda é iluminada pela luz do Sol.

A imagem foi feita através de uma combinação de outras imagens obtidas com os filtros espectrais azul, verde e vermelho gerando assim essa imagem em cor natural. A sonda Cassini captou esta imagem a uma distância aproximada de 134.000 quilômetros de Titã.

Fonte: NASA

segunda-feira, 26 de dezembro de 2011

Uma lâmpada de raios X

Em 1991 a astrofísica gaúcha Thaisa Storchi Bergmann descobriu um disco de matéria, uma nuvem achatada de gás ionizado, que gira em torno do buraco negro situado no centro da NGC 1097, uma bela galáxia espiral da constelação de Fornax, distante 45 milhões de anos-luz da Terra.

galáxia espiral NGC 1097

© ESO (galáxia espiral NGC 1097)

Durante uma década, a pesquisadora da Universidade Federal do Rio Grande do Sul (UFRGS) observou uma vez por ano a galáxia e constatou que o disco de gás não era uniforme. A nuvem continha um braço espiral que, a cada cinco anos e meio, dava uma volta completa em torno do buraco negro. A astrofísica também verificou que, por vezes, o disco se tornava mais brilhante do que o usual. Esses picos de luminosidade foram interpretados como sendo decorrentes de o buraco negro ter, nesses momentos, engolido mais matéria proveniente da nuvem, em razão de talvez haver ali uma maior densidade ou quantidade de gás para ser sugado.

Novas observações feitas com o telescópio Gemini Sul, situado em Cerro Pachon, no Chile, entre o final do ano passado e o início de 2011, corrigiram a periodicidade em que ocorre o ciclo da volta completa do braço espiral para um intervalo de um ano e meio e identificaram uma segunda variação na luminosidade do disco ao redor do buraco negro da galáxia – desta vez com uma frequência temporal muito menor, da ordem de uma semana. As emissões em raios X da parte mais interna da nuvem gasosa, mais quente e que envolve diretamente o buraco negro, variam em questão de dias, como se fosse uma lâmpada, e o clarão se irradia do centro para as bordas do disco. Como demora cerca de uma semana para a luz viajar do centro para a periferia da nuvem, o tamanho do raio do disco de matéria deve ser de sete dias-luz. “Só conseguimos perceber essa variação porque fizemos observações semanais da galáxia durante três meses seguidos”, diz Thaisa.

O disco de matéria da NGC 1097 apresenta irregularidades. Sua região central é mais grossa do que os setores mais afastados do buraco negro. Tecnicamente, possui a forma de um toroide, uma figura que lembra um pneu ou biscoito com um furo no meio. “É como se essa rosquinha fosse uma lâmpada de alta energia fixada num poste que se encontra um pouco mais elevado do que o resto do disco de gás”, compara Thaisa. “Ela se acende ou se intensifica em função da quantidade de gás que cai no buraco negro.”

No estudo, os pesquisadores analisaram dados obtidos pelo Gemini referentes à chamada linha espectral H-alfa, a emissão de energia mais intensa e visível do átomo de hidrogênio, proveniente da zona periférica do disco. Concluíram que a variação de emissão nessa região se devia à reverberação da luminosidade originada na “rosquinha”. Não se sabe exatamente por que a lâmpada pisca em intervalos de sete dias, mas esse evento provavelmente tem a ver com as variações na quantidade de matéria sugada pelo buraco negro. “Ele estava acostumado com um regime de captura de gás e, de repente, se viu obrigado a engolir mais matéria”, compara o astrofísico brasileiro Rodrigo Nemmen, outro autor do trabalho, que faz pós-doutoramento no Goddar Space-Flight Center, da NASA.

região central da galáxia NGC 1097

© ESO (região central da galáxia NGC 1097)

Como se sabe, não é possível observar de forma direta um buraco negro, uma região do espaço tão densa e compactada, dotada de um enorme campo gravitacional, da qual nada escapa, nem a luz. Mas um objeto com essas características fornece pistas indiretas de sua presença. Quando se descobre uma fonte misteriosa de radiação, em especial de raios X, num ponto do Universo, como o centro de uma galáxia ativa, uma das possíveis explicações para o fenômeno é a existência de um buraco negro. Pouco antes de ser tragada pelo campo gravitacional do buraco negro, a matéria do disco de gás se encontra tão aquecida que libera energia na forma de radiação. Portanto, quando ocorre um pico de absorção de matéria, é esperado que a região mais interna do disco, a lâmpada, aumente sua luminosidade e reverbere essa energia extra para suas bordas. 

Conhecer o tempo que a luz demora para viajar da parte mais central para a periferia de uma nuvem de gás permite obter uma estimativa da dimensão do disco de matéria independentemente de outros modelos teóricos. “Tendo a dimensão do disco e a velocidade do gás em torno do mesmo, que inferimos a partir de emissões ópticas e pode chegar a 10 mil quilômetros por segundo, podemos obter a massa do buraco negro”, explica Thaisa. Por meio dessa abordagem alternativa, os astrofísicos brasileiros recalcularam esse parâmetro do buraco negro no centro da NGC 1097. Deu um resultado da ordem de 100 milhões de massas solares, número que é compatível com estimativas feitas por outras técnicas.

Fonte: FAPESP (Pesquisa)

sexta-feira, 23 de dezembro de 2011

A Nebulosa da Coroa de Flores

A WISE (Wide-field Infrared Surevey Explorer) da NASA captou a foto abaixo da chamada Nebulosa da Coroa de Flores.

nebulosa Barnard 3

© WISE (nebulosa Barnard 3)

O nome oficial da nebulosa é: Barnard 3 ou IRAS Ring G159.6-18.5. Nuvens interestelares como essa são verdadeiros berçários cósmicos, locais onde estrelas estão nascendo.

O anel verde é feito de pequenas partículas de poeira quente que tem composição semelhante à névoa encontrada na Terra. A nuvem vermelha, no meio é provavelmente feita de poeira que é mais metálica e mais fria do que as regiões ao redor. A brilhante estrela no meio da nuvem vermelha, chamada de HD 278942, é tão luminosa que ela é provavelmente o que faz com que o anel ao redor brilhe. De fato, ventos estelares poderosos são os responsáveis por limpar a poeira quente ao redor e criar a forma anelada. A região que brilha intensamente na cor amarelo-esverdeado, à esquerda do centro é similar ao anel, apesar de ser mais densa. As estrelas brancas-azuladas dispersas através da cena estão localizadas tanto na frente como além da nebulosa.

Regiões similares à Nebulosa da Coroa de Flores são encontradas perto da banda da Via Láctea no céu noturno. A Nebulosa da Corao de Flores está um pouco afastada dessa banda, perto da borda entre a constelação de Perseus e Taurus, mas ela está localizada relativamente próxima da Terra a aproximadamente 1.000 anos-luz, a nuvem ainda é parte da Via Láctea.

As cores usadas nessa imagem representam comprimentos de onda específicos da luz infravermelha. A cor azul e ciano representa a luz com comprimento de onda de 3,4 e 4,6 mícron emitida predominantemente pelas estrelas. As cores verde e vermelha representam a luz de 12 e 22 mícron respectivamente, emitidas preferencialmente pela poeira.

Fonte: NASA

quinta-feira, 22 de dezembro de 2011

Galáxia vigorosa no alvorecer cósmico

Uma equipe internacional de astrônomos liderada por Masami Ouchi, da Universidade de Tóquio descobriu uma galáxia vigorosa em formação que surgiu cerca de 750 milhões de anos após o Big Bang.

galáxia vigorosa no alvorecer cósmico

© Sptizer/Hubble (galáxia vigorosa no alvorecer cósmico)

Esta galáxia, chamada GN-108036, foi uma excelente fonte de formação de estrelas na alvorada cósmica, que estava gerando uma quantidade excepcional de estrelas.
A equipe obteve os espectros da GN-108036 e calculou sua distância da Terra para confirmar que é uma das galáxias mais distantes já descobertas. Uma análise de imagens de arquivo revelaram a ocorrência de formação de estrelas extremamente enérgetica dentro dela, com uma grande massa de gás equivalente a cerca de uma centena de sóis por ano, estava gerando estrelas. Embora nove galáxias com cerca de 600 a 800 anos após o Big Bang foram confirmadas até o momento, a GN-108036 formou estrelas muito mais vigorosamente do que as outras galáxias. O líder da equipe Ouchi, comentou: "As galáxias estavam ativamente formando estrelas muito tempo depois do Big Bang, e algumas delas foram comparáveis ​​ou até mesmo mais ativas do que a GN-108036. A descoberta significativa sobre a GN-108036 é que ela demonstra a existência de uma galáxia de formação estelar vigorosa quando o Universo ainda era muito frio e escuro. "
Cerca de 380.000 anos após o Big Bang, uma diminuição na temperatura do Universo devida aos elétrons e prótons ao se juntarem para formar hidrogênio neutro. O Universo entrou na sua "idade escura" neste momento. Bahram Mobasher, um membro da equipe da Universidade da Califórnia, Riverside, explicou como a idade das trevas terminou: "Ela terminou quando nuvens de gás de hidrogênio neutro colapsou para gerar estrelas, formando as primeiras galáxias, o que provavelmente irradiou fótons de alta energia e reionizando o Universo. As galáxias como a GN-108036 podem ter contribuído para o processo de reionização, que é responsável pela transparência do Universo hoje. "
Para determinar a distância até a galáxia, os astrônomos utilizaram o espectrógrafo do Observatório Keck. Os dados coletados coletados mostraram uma linha Lyman-alfa, que indica as emissões de hidrogênio brilhante na parte ultravioleta do espectro. Atenuação de hidrogênio neutro no meio intergaláctico causou a sua esperada assimetria.
Os astrônomos detectaram sinais por meio de observações recentes descobrindo que a galáxia tem um diâmetro de cerca de 5.000 anos-luz, apenas 5% mais extensa que a Via Láctea, e que a quantidade de estrelas que nascem a cada ano foi mais de dez vezes maior do que em outras galáxias a uma distância comparável.
Curiosamente, várias equipes de astrônomos relataram descobertas de galáxias compactas e maciças de idade em torno de quatro bilhões de anos após o Big Bang. Como se formaram permanece um mistério. A formação estelar das galáxias, tais como a GN-108036 pode ser os ancestrais de galáxias desse tipo. Investigações detalhadas sobre a natureza da GN-108036 vai fornecer informação importante para compreender as fases iniciais da formação e evolução das galáxias.
Esta pesquisa será publicada no dia 10 de janeiro de 2012 na edição do The Astrophysical Journal. A pesquisa é baseada nos dados coletados no telescópio Subaru, que é operado pelo NAOJ (National Astronomical Observatory of Japan), o Observatório Keck, que é operado como uma parceria científica entre o Instituto de Tecnologia da Califórnia e a NASA, o telescópio espacial Hubble, gerido pela NASA e a ESA, o telescópio Spitzer do JPL (Jet Propulsion Laboratory) da NASA.

Fonte: NAOJ

Dois novos exoplanetas menores que a Terra

Descoberto um par de exoplanetas ainda mais diminutos que os outros dois anunciados recentemente pela NASA.

ilustração dos exoplanetas ao redor da estrela KOI 55

© Charpinet (ilustração dos exoplanetas ao redor da estrela KOI 55)

Os astros recém-descobertos são remanescentes de planetas gigantes que foram engolidos por sua estrela e depois "cuspidos" como "caroços".

A descoberta foi feita com a análise de dados do mesmo telescópio espacial, o Kepler, mas por um grupo diferente, liderado pelo francês Stephane Charpinet.

Os novos planetas têm 86,7% e 75,9% do raio da Terra e massas estimadas em 44% e 65%. Eles têm órbita muito próxima de sua estrela e possui superfície quente demais para abrigar água líquida e vida.

O aspecto mais inusitado dos planetas é que no centro do sistema estelar que os abriga está a KOI 55, estrela de idade avançada e que já passou pela fase em que se torna uma gigante vermelha.

É o mesmo destino previsto para o Sol, daqui a 5 bilhões de anos, quando o hidrogênio, combustível para a fusão nuclear em seu interior, começar a se esgotar.

No passado, os planetas em torno de KOI 55, batizados apenas como KOI 55.01 e KOI 55.02, eram provavelmente astros com tamanhos similares aos de Júpiter e Saturno, os gigantes gasosos do Sistema Solar.

Quando a estrela começou a virar uma gigante vermelha, sua atmosfera estelar começou a se expandir tanto que encobriu os dois planetas.

O grupo de Charpinet descreve no estudo o que acha que ocorreu após a estrela "engolir" os exoplanetas. Esse astros só acabaram engolfados na atmosfera estelar porque, apesar de ser grandes, tinham órbitas curtas, como a Terra.

"Enquanto eles iam cavando seu caminho em meio ao envelope estelar, iam perdendo toda a camada exterior de gás e expelindo também o gás da atmosfera da gigante vermelha, fazendo-a perder massa", explicou Betsy Green, da Universidade do Arizona, astrônoma que participou do estudo.

Se os planetas fossem pequenos naquela época, provavelmente não teriam sobrevivido. Só existem hoje porque começaram com uma quantidade de massa grande antes de sofrer atrito.

Os planetas acabaram varrendo para fora a atmosfera da gigante vermelha, que pode ter perdido mais de 50% de sua massa. Agora ela é uma estrela da classe das sub-anãs quentes tipo B, que possuem um núcleo de hélio inerte e geram energia por fusão nuclear em camadas mais exteriores.

A descoberta dos planetas ocorreu meio por acaso. Charpinet e Green começaram a observar a KOI 55 para entender os modos de vibração da estrela, que exibe movimentos similares aos terremotos da Terra. A vibração causa oscilações no brilho que podem revelar propriedades interessantes da estrela, como sua massa e seu raio.

Mas duas das oscilações periódicas que os cientistas detectaram tinham períodos de cinco a oito horas, longos demais para terremotos.

Charpinet concluiu que a probabilidade maior era a de que a oscilação de brilho estivesse sendo causada por planetas refletindo a luz de KOI 55, assim como os períodos da Lua refletem luz solar em quantidade diferente para a Terra.

Os planetas rebatem uma quantidade enorme de luz, pois estão a menos de um centésimo da distância que a Terra está do Sol.

Fonte: Nature

quarta-feira, 21 de dezembro de 2011

Pulsar num remanescente de supernova

Dados do observatórios de raios-X Chandra da NASA e do XMM-Newton da ESA foram combinados para descobrir um pulsar jovem nos restos de uma supernova localizada na Pequena Nuvem de Magalhães.

pulsar SXP 1062

© NASA/ESA (pulsar SXP 1062)

Isto pode ser a primeira vez que um pulsar, uma estrela muito densa, foi encontrado em um remanescente de supernova na Pequena Nuvem de Magalhães, uma diminuta galáxia satélite da Via Láctea.
Duas equipes diferentes de cientistas estimam que o remanescente de supernova em torno do pulsar SXP 1062 tem entre 10.000 e 40.000 anos. Isto significa que o pulsar é muito jovem, do ponto de vista astronômico, desde que foi supostamente formado na mesma explosão que produziu o remanescente de supernova.

A pesquisa começou com modelos teóricos para entender a evolução deste objeto incomum. Os dados ópticos também exibe formações espetaculares de gás e poeira em uma região de formação estelar no lado esquerdo da imagem. Uma comparação entre a imagem do Chandra com imagens ópticas mostram que o pulsar tem um companheiro quente e maciço.
Os astrônomos estão interessados ​​no SXP 1062 porque os dados do Chandra e do XMM-Newton mostram que ele está girando muito lentamente, uma vez a cada 18 minutos. Em contrapartida, alguns pulsares giram várias vezes por segundo, incluindo a maioria dos pulsares recém-nascidos.

Na imagem os dados em raios-X do Chandra e do XMM-Newton estão em azul e os dados ópticos do Observatório Interamericano Cerro Tololo, no Chile, estão em vermelho e verde. O pulsar SXP 1062 é a fonte luminosa em branco localizado no lado direito da imagem no meio da emissão difusa em azul dentro de um escudo vermelho.

Fonte: Harvard-Smithsonian Center for Astrophysics

terça-feira, 20 de dezembro de 2011

Dois exoplanetas do tamanho da Terra

Foram encontrados dois mundos do tamanho da Terra em órbita de uma estrela similar ao nosso Sol, em outro grande avanço na busca pelos chamados exoplanetas.

exoplaneta Kepler-20eexoplaneta Kepler-20f

© NASA (ilustração dos exoplanetas Kepler-20e e Kepler-20f)

Um dos exoplanetas é apenas 3% maior do que a Terra e o outro, 13% menor, de proporção um pouco inferior à de Vênus.

Pressupõe-se que os planetas tenham uma composição rochosa similar à da Terra, mas eles orbitam tão perto de sua estrela, a Kepler-20, que a temperatura provavelmente seria alta demais para possibilitar a vida. O exoplaneta maior, Kepler-20f, completa um ano em 19,5 dias e deve ter uma atmosfera espessa de vapor d'água, enquanto o menor, Kepler-20e, dá uma volta completa na estrela em apenas 6,1 dias.

A descoberta dos dois foi uma façanha técnica. Eles são os menores exoplanetas encontrados desde que o primeiro mundo além do nosso Sistema Solar foi detectado oficialmente, em 1995. Sua distância também é enorme: a Kepler-20 fica a 3,9 mil anos-luz da Terra. Até agora, 708 planetas foram detectados em 534 sistemas solares, segundo um cálculo compilado pela Enciclopédia de Planetas Extrassolares.

Quase todos são gigantes gasosos ou estão situados perto ou longe demais de sua estrela para permitir que haja água em estado líquido. Apenas três foram confirmados como rochosos e orbitam a "zona Goldlocks", onde a temperatura é agradável. Dois deles, Gliese 581d e HD 85512b, orbitam estrelas mais frias e menores que o Sol. O terceiro é o Kepler-22b, anunciado em 5 de dezembro, que tem 2,4 vezes o tamanho da Terra e orbita uma estrela similar ao Sol a cada 290 dias.

As duas novas descobertas foram encontradas por uma equipe chefiada por François Fressin, do Centro Harvard-Smithsonian de Astrofísica, usando o telescópio espacial orbital Kepler, da NASA, que monitora mais de 150 mil estrelas a partir de minúsculas variações de luz. O sinal detectado pelo telescópio pode ser devido à um exoplaneta que está passando em frente a uma estrela.

Fonte: Nature

Alinhamento de galáxias gera ferradura cósmica

Uma interessante galáxia aparece circulada nessa imagem feita pelo telescópio espacial Hubble.

galáxia LRG 3-757

© Hubble (galáxia LRG 3-757)

A galáxia, uma das galáxias de um grupo conhecido como Galáxias Luminosas Vermelhas, tem uma grande massa pouco comum, algo em torno de 10 vezes a massa da Via Láctea. Contudo, na verdade é a forma de ferradura azul na imagem acima que circunscreve a galáxia vermelha que é o grande destaque dessa imagem.

Essa ferradura azul é uma galáxia distante que tem sido ampliada e retorcida em um anel quase que completo por uma força gravitacional forte da massiva Galáxia Luminosa Vermelha que aparece em primeiro plano. Para ser vista a galáxia precisa de um alinhamento com a galáxia à sua frente e das galáxias ao fundo, fazendo com que a Ferradura Cósmica apareça.

A Ferradura Cósmica é um dos exemplos mais conhecidos de um Anel de Einstein. Ela também fornece a tentadora visão do começo do Universo, o desvio para o vermelho da galáxia azul, uma medida de quanto o comprimento de onda da luz tem sido desviado pela expansão do cosmos, é de aproximadamente 2,4. Isso significa que que essa galáxia surgiu aproximadamente 3 bilhões de anos depois do Big Bang. Estima-se atualmente que o Universo tenha 13,7 bilhões de anos.

Os astrônomos descobriram a Ferradura Cósmica pela primeira vez em 2007 usando dados do Sloan Digital Survey. Mas essa imagem do Hubble feita na luz visível e infravermelha com a Wide Field Camera 3, oferece uma visão muito mais detalhada desse intrigante objeto.

Fonte: ESA

A bela forma da galáxia espiral M74

O telescópio espacial Hubble fotografou recentemente a galáxia espiral M74, também conhecida como NGC 628.

galáxia M74

© Hubble (galáxia M74)

Ela é uma das mais perfeitas do gênero, com braços simétricos em forma de espiral que partem de seu centro, que são polvilhados por aglomerados de jovens estrelas azuis e regiões rosas brilhantes de hidrogênio ionizado. Essas regiões de formação de estrelas mostram um excesso de luz no comprimento de onda do ultravioleta. Ao longo dos braços espirais há presença de poeira que também originou-se nas proximidades do núcleo da galáxia.

A M74 está a 32 milhões de anos-luz, na constelação de Peixes. Ela é a maior de um pequeno grupo com cerca de 12 galáxias reunidas, que juntas contém aproximadamente cem bilhões de estrelas, sendo um pouco menor que a Via Láctea.

Fonte: NASA

segunda-feira, 19 de dezembro de 2011

O menor buraco negro do Universo

Uma equipe internacional de astrônomos identificou um candidato para o buraco negro mais pequeno conhecido usando dados de RXTE (Rossi X-ray Timing Explorer) da NASA.

ilustração do disco formado no buraco negro

© NASA/GSFC (ilustração do disco formado no buraco negro)

A evidência vem de um tipo específico de raio-X padrão, apelidado de "batimento cardíaco" por causa de sua semelhança com um eletrocardiograma.

O buraco negro foi denominado IGR J1709-3624 após a obtenção das coordenadas astronômicas de sua posição no céu. O sistema binário combina uma estrela normal com um buraco negro que pode pesar menos do que três vezes a massa do Sol; que está perto do limite teórico de massa, onde os buracos negros se tornam possíveis.
O gás da estrela normal flui em direção ao buraco negro e forma um disco em torno dele. A fricção dentro do disco aquece o gás a milhões de graus, o que é quente o suficiente para emitir raios-X. Variações cíclicas na intensidade dos raios-X observadas refletem processos que ocorrem dentro do disco de gás. Os cientistas acreditam que as mudanças mais rápidas ocorrem perto do horizonte de eventos do buraco negro.
O sistema binário foi identificado durante uma explosão em 2003. Arquivamento de dados de várias missões espaciais mostram que se torna ativo cada poucos anos. Sua explosão mais recente começou em fevereiro e está em curso. O sistema está localizado na direção da constelação do Escorpião, mas a distância não está bem estabelecida, localizado a 16.000 anos-luz ou mais de 65.000 anos-luz de distância.
O detentor do recorde para uma ampla variabilidade de raios-X é um outro sistema binário do buraco negro chamado GRS 1915+105. Este sistema é único em exibição de mais de uma dúzia de padrões altamente estruturados, tipicamente com duração entre segundos e horas.
"Nós pensamos que a maioria destes padrões representam ciclos de acumulação e de ejeção de um disco instável, e agora vemos sete deles no IGR J17091", disse Tomaso Belloni do Observatório Brera em Merate, na Itália.

O GRS 1915 tem um forte campo magnético perto do horizonte de eventos, onde ejeta parte do gás em direções opostas com cerca de 98% da velocidade da luz.

Mudanças no espectro de raios-X observadas pelo RXTE durante cada batimento revelam que a região mais interna do disco emite radiação suficiente para empurrar para trás o gás, criando um vento forte para fora que interrompe o fluxo para dentro. Eventualmente, o disco interno fica tão brilhante e quente que essencialmente se desintegra e mergulha em direção ao buraco negro, restabelecendo o jato e começando um novo ciclo. Todo esse processo acontece em menos de 40 segundos.
A emissão do batimento do IGR J17091 pode ser 20 vezes mais fracas que do GRS 1915 e pode circular cerca de oito vezes mais rápido, em menos de cinco segundos.
Estima-se que a massa do GRS 1915 é cerca de 14 vezes da massa do Sol, colocando-o entre os buracos negros mais maciços conhecidos que se formaram por causa do colapso de uma única estrela.

Esta análise é apenas o início de um programa maior para comparar esses dois buracos negros em detalhe utilizando dados do RXTE, do satélite Swift da NASA e do observatório XMM-Newton.
Um artigo descrevendo esta pesquisa foi publicado no The Astrophysical Journal Letters.

Fonte: NASA

sábado, 17 de dezembro de 2011

Centaurus A: uma galáxia canibal

A Centaurus A (NGC 5128) é a galáxia elíptica gigante mais próxima da Terra, situada a cerca de 11 milhões de anos-luz de distância. É um dos objetos mais estudados no céu meridional.

galáxia NGC 5128

© ESO (galáxia NGC 5128)

Já em 1847 a sua aparência única tinha suscitado o interesse do famoso astrônomo inglês John Herschel, que catalogou os céus austrais, compilando uma lista detalhada de nebulosas.

No entanto, Herschel não podia saber que esta linda e espectacular aparência se deve a uma camada opaca de poeira que cobre a parte central da galáxia. Esta poeira deve ser os restos de uma fusão cósmica entre uma galáxia elíptica gigante e uma galáxia espiral mais pequena com muita poeira.

Esta galáxia, há cerca de 200 a 700 milhões de anos, consumiu uma pequena galáxia espiral rica em gás - o conteúdo da qual parece encontrar-se em movimento no interior do núcleo de Centaurus A, provavelmente dando origem a novas gerações de estrelas.

Os primeiros vislumbres dos restos desta refeição foram obtidos graças a observações feitas com o Observatório Espacial Infravermelho da ESA (ESA Infrared Space Observatory), as quais revelaram uma estrutura com uma dimensão de 16.500 anos-luz, muito semelhante à de uma pequena galáxia barrada. Mais recentemente, o telescópio espacial Spitzer da NASA resolveu esta estrutura num paralelograma, o qual pode ser explicado como o resto de uma galáxia espiral rica em gás que se encontra em queda na direcção de uma galáxia elíptica e se vai torcendo e deformando durante o processo. A fusão de galáxias é o mecanismo mais comum para explicar a formação de galáxias elípticas gigantes.

Estas imagens obtidas com o telescópio de 3,58 metros, o New Technology Telescope instalado no Observatório do ESO de La Silla, proporcionaram aos astrônomos uma visão ainda mais nítida da estrutura desta galáxia, completamente livre de poeiras. As imagens originais, obtidas no infravermelho próximo através de três filtros diferentes(J, H, K) foram combinadas utilizando uma nova técnica que retira o efeito de ecrã escuro da poeira, resultando assim uma imagem limpa do centro da galáxia.

O que os astrônomos descobriram é surpreendente: “Existe claramente um anel de estrelas e enxames escondido por trás das camadas de poeira, e as nossas imagens mostram-no bem, com um detalhe sem precedentes,” diz Jouni Kainulainen, autor principal do artigo que apresenta estes resultados. “Uma análise mais detalhada desta estrutura fornecerá importantes pistas sobre como terá ocorrido o processo de fusão e qual terá sido a função da formação estelar durante o mesmo.”

Os pesquisadores estão entusiasmados com as possibilidades desta nova técnica: “Estes são os primeiros passos no desenvolvimento de uma nova técnica que tem o potencial de traçar, a alta resolução e de maneira bastante eficaz, nuvens de gás gigantes noutras galáxias,” explica o co-autor João Alves. “Saber como estas nuvens gigantes se formam e evoluem é compreender como é que as estrelas se formam nas galáxias.”

Esperando pelos novos telescópios planeados, tanto terrestres como espaciais, “esta técnica é complementar dos dados de rádio que o ALMA obterá para galáxias próximas, e ao mesmo tempo abre boas perspectivas de investigação de populações estelares extragalácticas, com o futuro European Extremely Large Telescope do ESO e com o Telescópio Espacial James Webb, uma vez que a poeira é omnipresente nas galáxias,” diz o co-autor Yuri Beletsky.

Observações anteriores feitas com o instrumento ISAAC montado no VLT (Very Large Telescope) do ESO revelaram que existe um buraco negro de grande massa no interior de Centaurus A.

centro de Centaurus A

© ESO (centro de Centaurus A)

A sua massa é cerca de 200 milhões de vezes a massa do nosso Sol, ou ainda, 50 vezes mais maciço que o buraco negro que se encontra no centro da nossa Via Láctea. Contrastando com a nossa galáxia, o buraco negro de grande massa na Centaurus A está sendo continuamente alimentado por matéria que cai no seu interior, fazendo com que esta galáxia gigante seja muito ativa. De fato, Centaurus A é uma das fontes de rádio mais brilhantes do céu. Jatos de partículas altamente energéticas vindas do centro, são igualmente observadas em imagens de rádio e raios-X.

Fonte: ESO e Daily Galaxy

sexta-feira, 16 de dezembro de 2011

Uma jovem estrela diabólica

Apesar das cores celestiais da imagem a seguir, não tem nada de pacífico sobre a região de formação de estrela conhecida como S106 ou Sh 2-106.

região S106

© Hubble (região S106)

Uma jovem estrela diabólica, denominada de S106 IR, localiza-se no material ejetado a alta velocidade, que corrompe o gás e a poeira ao redor. A estrela tem uma massa de mais ou menos 15 vezes a massa do Sol e está na fase final de seu processo de formação. Em breve ela irá acalmar e entrar na sequência principal onde passará a fase adulta de sua vida.

No momento, a S106 IR permanece mergulhada em sua nuvem natal, mas está se rebelando contra ela. O material expelido da estrela não somente dá à nuvem a forma de uma ampulheta mas também faz o gás hidrogênio ficar muito quente e turbulento.

A estrela jovem também aquece o gás ao redor, fazendo com que alcance temperaturas de 10.000ºC. A radiação da estrela ioniza os lobos de hidrogênio fazendo com que eles brilhem. A luz desse gás brilhante é colorida de azul na imagem.

Separando essas regiões de gás brilhante existe uma espessa linha de poeira mais fria, que aparece em vermelho na imagem. Esse material escuro esconde quase que completamente a estrela ionizada da nossa visão, mas o jovem objeto ainda pode ser visto através da parte mais selvagem da linha de poeira.

O S106 foi o 106˚ objeto a ser catalogado pelo astrônomo Stewart Sharpless em 1950. Ela está localizada a poucos milhares de anos-luz de distância na direção da constelação de Cygnus, o Cisne. A nuvem por si só é relativamente pequena para os padrões das regiões de formação de estrelas, aproximadamente 2 anos-luz ao longo do eixo maior. Isso representa aproximadamente a metade da distância entre o Sol e a estrela mais próxima, a Proxima Centauri.

Fonte: ESA

quinta-feira, 15 de dezembro de 2011

Uma galáxia transbordando de estrelas novas

A NGC 253 brilha a cerca de 11,5 milhões de anos-luz de distância na constelação austral do Escultor.
galáxia NGC 253
© ESO (galáxia NGC 253)
É muitas vezes apenas chamada Galáxia do Escultor, embora se lhe dêem também outros nomes como a Galáxia da Moeda de Prata ou do Dolar de Prata. É facilmente observável através de binóculos, já que é uma das galáxias mais brilhantes no céu, depois da enorme vizinha da Via Láctea, a Galáxia de Andrômeda.
Os astrônomos observaram formação estelar muito intensa espalhada por toda a galáxia e classificaram-na como uma galáxia de formação estelar explosiva. Mais pormenores sobre a NGC 253 foram obtidos com o Very Large Telescope do ESO (VLT) e com o telescópio espacial Hubble da NASA/ESA. Em 2009, estes instrumentos mostraram que, no seu centro, a NGC 253 alberga um buraco negro supermassivo com propriedades muito semelhantes às do buraco negro que se esconde no centro da Via Láctea.
Os muitos nodos brilhantes que polvilham a galáxia são maternidade estelares, onde estrelas quentes jovens começam a brilhar. A radiação emitida por estas jovens gigantes azuis-esbranquiçadas faz brilhar intensamente as nuvens de hidrogênio que se encontram em seu redor.
Esta galáxia foi descoberta por uma astrônoma alemã-inglesa, Caroline Herschel, irmã do famoso astrônomo William Herschel, quando procurava cometas em 1783. Os Herschels teriam ficado maravilhados com o rico e imenso detalhe desta imagem da NGC 253 obtida pelo VST.
Esta imagem foi captada durante a fase de verificação científica do VST -  quando o desempenho científico do telescópio é testado antes do começo das operações. Os dados VST foram combinados com imagens no infravermelho do VISTA de modo a identificarem-se as gerações de estrelas mais jovens presentes na galáxia. A imagem tem mais de 12.000 pixels de comprimento e as excelentes condições atmosféricas do céu  do Observatório do Paranal do ESO, combinadas com a óptica do telescópio, resultaram em imagens de estrelas muito nítidas espalhadas por toda a imagem.
O VST é um telescópio de rastreio de campo largo de 2,6 metros de diâmetro, com um tamanho de campo de um grau - correspondente a duas vezes o tamanho da Lua Cheia. O projeto VST é uma colaboração entre o INAF (Istituto Nazionale di Astrofisica) através do Osservatorio Astronomico di Capodimonte em Nápoles (Itália) e o ESO. A câmara OmegaCAM com 268 milhões de pixels, no coração do telescópio, foi montada para mapear o céu de forma rápida mas com qualidade de imagem exemplar. O VST é o maior telescópio do mundo concebido exclusivamente para mapear o céu no visível, complementando assim o VISTA, o telescópio de rastreio infravermelho do ESO, também instalado no Paranal.
Observando esta imagem de forma ampliada não só nos dá a possibilidade de inspecionar detalhadamente a formação estelar nos braços em espiral da galáxia, mas também nos revela a rica tapeçaria de fundo, composta por galáxias muito mais distantes que a NGC 253.
Fonte: ESO

Supernova de Tycho: emissora de raios gama

No início de novembro de 1572, os observadores na Terra testemunhou o surgimento de uma "nova estrela" na constelação de Cassiopéia, um evento reconhecido agora como a mais brilhante supernova a olho nu em mais de 400 anos.
remanescente de supernova Tycho
© NASA (remanescente de supernova Tycho)
Muitas vezes chamado de "supernova de Tycho", após o grande astrônomo dinamarquês Tycho Brahe, que ganhou notoriedade por seu extenso estudo do objeto, anos de dados coletados pelo telescópio espacial raios gama Fermi revelaram que continua sendo a estrela despedaçada que brilha devido aos raios gama de alta energia.
A supernova de 1572 foi um dos maiores divisores de água na história da astronomia. A estrela brilhava num momento em que o céu da noite foi considerado como uma parte fixa e imutável do Universo.
A supernova apareceu pela primeira vez em torno de 06 de novembro, mas o tempo ruim manteve-a longe de Tycho, até que em 11 de novembro foi notada por ele.
A supernova permaneceu visível por 15 meses e não apresentou movimento no céu, indicando que ela estava localizada muito além do Sol, da Lua e dos planetas. Astrônomos modernos estimam que o restante encontra-se entre 9.000 e 11.000 anos-luz de distância.
A detecção fornece aos astrônomos outra pista para entender a origem dos raios cósmicos, partículas subatômicas constituídas principalmente por prótons, que se movem através do espaço a velocidades próximas à da luz. Exatamente onde e como essas partículas alcançam tais energias incríveis tem sido um mistério de longa data, porque as partículas carregadas em alta velocidade através da galáxia são facilmente desviadas por campos magnéticos interestelares. Isso torna impossível de rastrear os raios cósmicos de volta para suas fontes.
Os raios gama são a forma mais energética de luz e penetrante, que servem como indicadores para a aceleração de partículas que dão origem aos raios cósmicos.
"Essa detecção nos dá provas que sustentam a noção de que os restos de supernova podem acelerar os raios cósmicos", disse o co-autor Stefan Funk, astrofísico do Instituto Kavli de Astrofísica e Cosmologia de Partículas (KIPAC), em conjunto localizado no SLAC National Accelerator Laboratory e a Universidade de Stanford, na Califórnia.
Em 1949, o físico Enrico Fermi sugere que os raios cósmicos de energias elevadas foram acelerados nos campos magnéticos de nuvens de gás interestelar.
Após mais de dois anos e meio de escaneando o céu, os dados LAT (Large Area Telescope) mostram claramente que uma região de emissão de raios gama com energia de GeV (gigaelétron-volts) é associada com o remanescente da supernova de Tycho; para comparação, a energia da luz visível é cerca de 2 a 3 de elétron-volts.
remanescente supernova de Tycho em raios-X, infravermelho e rádio
© JAXA (supernova de Tycho em raios-X, infravermelho e rádio)
A imagem acima mostra o plasma quente (cerca de dez milhões K, em azul por Suzaku), poeira quente (cerca de 100 K, em vermelho por AKARI), e gás molecular frio (CO; em verde por Galactic).
O remanescente da supernova de Tycho é um importante achado para o Fermi, porque este objeto foi tão estudado extensivamente em outras partes do espectro eletromagnético, e agora tem grande oportunidade para identificar uma assinatura espectral indicando a presença de raios cósmicos.
Os pesquisadores concluíram que um processo de produção de píon é a melhor explicação da emissão. Primeiro, um próton viajando perto da velocidade da luz atinge um próton de movimento mais lento. Essa interação cria uma partícula instável - um píon - com apenas 14 por cento da massa do próton. Em apenas 10 milionésimos de um bilionésimo de segundos ocorre o decaimento do píon em um par de raios gama.
Se esta interpretação estiver correta, então em algum lugar dentro do remanescente, os prótons estão sendo acelerados até perto da velocidade da luz, e em seguida, interagindo com as partículas mais lentas para produzir raios gama, a forma mais extrema de luz.
Fonte: Daily Galaxy

Detectada supernova onze horas depois de explodir

A descoberta de uma supernova em uma galáxia próxima à Terra 11 horas após sua explosão permitirá aos cientistas estudar as características desses sistemas pouco conhecidos.

galáxia antes e depois da explosão da SN 2011fe

© Hubble (galáxia antes e depois da explosão da SN 2011fe)

A supernova SN 2011fe foi observada na galáxia Messier 101 no último mês de agosto por uma equipe de cientistas liderada por Peter Nugent, do laboratório Lawrence Berkeley, nos Estados Unidos. Mario Hamuy, da Universidade do Chile, explica em artigo paralelo, que esse achado permitirá investigar as particularidades das supernovas de tipo Ia, explosões estelares que constituem "uma ferramenta destacada em cosmologia, mas das quais se desconhece a natureza".

Existe o consenso que são uma classe de estrelas em explosão caracterizadas pela ausência de hidrogênio (o elemento químico mais abundante no Universo), que resultam da violenta explosão de uma anã branca, que é a remanescente de uma estrela que já completou seu ciclo normal de vida.

Normalmente, as anãs brancas, compostas de carbono e oxigênio, vão se apagando ao não alcançar a temperatura suficiente para completar a fusão desses elementos. No entanto, às vezes, se estão acompanhadas de outras estrelas, podem atrair a massa destas e momentaneamente ultrapassar o limite e entrar em colapso.

Se chegam a uma massa determinada, a temperatura aumenta até o ponto de possibilitar de novo a fusão do carbono e do oxigênio, o que, devido à grande pressão interior, gera uma explosão nuclear que dá lugar a uma supernova de tipo Ia. Os cientistas constataram que a origem de uma supernova de tipo Ia é uma anã branca, mas a descoberta da SN 2011fe permitirá estudar que tipo de estrela é a acompanhante da anã branca, explicou Hamuy.

As primeiras observações desta supernova permitem descartar que, pelo menos neste caso, a acompanhante da anã branca seja o que se conhece como uma gigante vermelha, que é cem vezes mais luminosa que o Sol. Os cientistas chegaram a esta conclusão porque, em caso contrário, teriam percebido seu rastro nas imagens prévias ao descobrimento da supernova.

Isto deixaria, segundo os modelos teóricos, outras duas opções: uma estrela subgigante, que são pouco mais luminosas que o Sol, ou outra anã branca, que é 10 mil vezes menos luminosa que este astro. Embora a qualidade das imagens prévias, obtidas mediante telescópio, não permitam descartar estas outras duas opções, Hamuy frisa que eliminar a opção da gigante vermelha "representa um grande avanço em nossa compreensão das estrelas geradoras das supernova de tipo Ia".

Fonte: Nature

Objeto aproxima-se rapidamente de um buraco negro

Ao longo de um programa de 20 anos de duração que utiliza os telescópios do ESO para monitorizar o movimento das estrelas em torno do buraco negro supermassivo situado no centro da nossa galáxia, uma equipe de astrônomos liderada por Reinhard Genzel do Instituto Max-Planck para a Física Extraterrestre (MPE) na Alemanha descobriu um objeto único em aproximação rápida ao buraco negro.

simulação da nuvem de gás se aproximando do buraco negro

© ESO (simulação da nuvem de gás se aproximando do buraco negro)

Nos últimos sete anos, a velocidade deste objeto praticamente duplicou, atingindo mais de 8 milhões de km/hora. Encontra-se numa órbita muito alongada e a meados de 2013 passará a uma distância de apenas 40 bilhões de quilômetros do horizonte de eventos do buraco negro, uma distância de cerca de 36 horas-luz. Trata-se, em termos astronômicos, de um encontro com um buraco negro supermassivo extremamente próximo.

Este objeto é muito mais frio do que as estrelas circundantes (com uma temperatura de apenas cerca de 280ºC) e é essencialmente composto de hidrogênio e hélio. Trata-se de uma nuvem de poeira e gás ionizado com uma massa de cerca de três vezes a da Terra. A nuvem brilha sob a intensa radiação ultravioleta emitida por estrelas quentes, que se encontram em seu redor no coração superlotado da Via Láctea.

A atual densidade da nuvem é muito maior do que o gás quente que rodeia o buraco negro. No entanto, à medida que a nuvem se aproxima do buraco negro, a pressão externa que vai aumentando, irá comprimir a nuvem. Ao mesmo tempo, a grande força gravitacional do buraco negro, o qual tem uma massa quatro milhões de vezes maior que a do Sol, continuará a acelerar o movimento para o interior e a esticar a nuvem ao longo da sua órbita.

“A imagem de um astronauta, próximo de um buraco negro, a ser esticado até ficar tipo espaguete é bastante comum em ficção científica. Mas agora podemos efetivamente ver isso acontecendo à nova nuvem descoberta, que não vai sobreviver à experiência,” explica Stefan Gillesseen (MPE), autor principal do artigo científico que descreve os resultados.

As bordas da nuvem começam já a rasgar-se e espera-se que a nuvem se desfaça completamente em pedaços nos próximos anos. Os astrônomos vêem já sinais claros do aumento da perturbação no período de 2008 a 2011.

Espera-se também que o material se torne muito mais quente à medida que se aproximar do buraco negro em 2013 e comece a emitir em raios-X. Atualmente existe pouco material próximo do buraco negro, por isso a substância recém-chegada será o combustível dominante do buraco negro durante os próximos anos.

Uma explicação para a formação da nuvem é que o material que a compõe possa ter vindo de estrelas jovens de grande massa que se encontram nas proximidades e que perdem massa muito rapidamente devido aos ventos estelares. Estrelas deste tipo sopram literalmente o seu gás para o exterior. A colisão de ventos estelares de uma estrela dupla conhecida que orbita em torno do buraco negro central pode ter levado à formação da nuvem.

“Os próximos dois anos serão muito interessantes e deverão trazer-nos informação extremamente valiosa sobre o comportamento da matéria em torno destes objetos massivos tão extraordinários,” conclui Reinhard Genzel.

Fonte: ESO

quarta-feira, 14 de dezembro de 2011

O aglomerado de galáxias Abell 2052

Como se fosse vinho em uma taça, vastas nuvens de gás quente são sacudidas no Abell 2052, um aglomerado de galáxias localizado à aproximadamente 480 milhões de anos-luz de distância da Terra.

aglomerado de galáxias Abell 2052

© Chandra (aglomerado de galáxias Abell 2052)

Dados obtidos das emissões de raios-X e apresentados em azul pelo observatório de raios-X Chandra da NASA mostram o gás quente em seu sistema dinâmico; dados obtidos da emissão na luz visível e captados pelo VLT (Very Large Telescope) mostram as galáxias. O gás quente que brilha em raios-X tem uma temperatura média de 30 milhões de graus.

Uma grande estrutura em espiral no gás quente, se espalhando por quase um milhão de anos-luz, é vista ao redor da parte de fora da imagem, envolvendo uma gigantesca galáxia elíptica no centro. Essa espiral foi criada quando um pequeno aglomerado de galáxias se chocou com um aglomerado maior que circundava a galáxia elíptica central.

À medida que o aglomerado menor se aproximava, o gás quente denso do aglomerado central foi atraído pela sua gravidade. Após o aglomerado menor ter passado pelo centro do aglomerado, a direção de movimento do aglomerado reverteu e ele começou a viajar de volta rumo ao centro do aglomerado maior. O aglomerado então passou novamente pelo centro do aglomerado maior e sacudiu todo o material ali como se faz com uma taça com vinho. No caso do vinho as paredes da taça empurram o vinho de volta ao centro, onde no aglomerado a força gravitacional da matéria nos aglomerados é puxada de volta. O gás agitado acaba tomando um padrão espiral pelo fato da colisão entre os dois aglomerados não ter sido uma colisão central.

Esse tipo de mecanismo de sacudida no Abell 2052 teve importantes implicações físicas. Primeiro, ele ajudou a empurrar parte do gás mais denso e frio localizado no centro do aglomerado, onde as temperaturas são cerca de 10 milhões de graus, para longe do núcleo. Isso ajudou a prevenir futuro resfriamento desse gás no núcleo e poderia limitar a quantidade de novas estrelas que seriam formadas na galáxia central. Os movimentos de sacudida como esses que aconteceram no Abell 2052, também redistribuíram os elementos pesados, como o ferro e o oxigênio, que são forjados em explosões de supernovas. Esses elementos são usados na futura geração de estrelas e planetas e são necessários para a formação da vida como a conhecemos.

As observações feitas pelo Chandra no Abell 2052, foram relativamente longas, durando mais de uma semana. Essa observação profunda foi necessária para se detectar todos os detalhes que são visíveis nessa imagem. Mesmo assim, um certo processamento foi necessário para revelar a estrutura espiral mais externa.

Em adição ao aspecto espiral de grande escala, as observações profundas feitas pelo Chandra revelaram detalhes surpreendentes no centro do aglomerado relacionados com explosões de um buraco negro supermassivo central. Os dados do Chandra mostram claras bolhas sendo evacuadas pelo material expelido do buraco negro, que são envolvidas por anéis densos, brilhantes e frios. Como acontece com o movimento de agito, essa atividade ajuda a prevenir o resfriamento do gás no núcleo do aglomerado, impondo assim limites para o crescimento da galáxia elíptica gigante e de seu buraco negro supermassivo.

Esses resultados foram publicados no The Astrophysical Journal.

Fonte: Harvard-Smithsonian Center for Astrophysics

Uma visão infravermelha do Dragonfish

A imagem a seguir em infravermelho obtida pelo telescópio espacial Spitzer da NASA mostra a nebulosa apelidada de Dragonfish.

nebulosa Dragonfish

© Spitzer (nebulosa Dragonfish)

Essa região turbulenta, cheia de estrelas, é o local de algumas das estrelas mais massivas e luminosas da nossa Via Láctea. Ela está localizada a aproximadamente 30.000 anos-luz de distância na constelação da Crux (Cruzeiro do Sul).

As estrelas massivas têm inflado uma bolha de gás e poeira, cavando uma concha de mais de 100 anos-luz de diâmetro (observe a parte inferior central da imagem). Essa concha forma a boca repleta de dentes do Dragonfish, e as duas estrelas brilhantes marcam a posição do que seriam seus olhos.

A luz infravermelha nessa região vem do gás e da poeira que são aquecidos pelo aglomerado central de estrelas massivas que não é visível na imagem acima. Os pontos brilhantes ao longo da concha que marcam os olho do Dragonfish são possíveis regiões menores de formação de novas estrelas, que têm seu nascimento disparado pela compressão do gás e da poeira pelo vento soprado pelas estrelas massivas centrais.

Fonte: NASA/JPL

terça-feira, 13 de dezembro de 2011

Região central do aglomerado NGC 6642

A natureza compacta dos aglomerados globulares é uma faca de dois gumes. Por um lado, tendo tantas estrelas de idades similares isso fornece aos astrônomos detalhes sobre a química da nossa galáxia no início de sua vida.

aglomerado globular NGC 6642

© Hubble (aglomerado globular NGC 6642)

Mas, ao mesmo tempo, a grande densidade de estrelas no interior dos aglomerados globulares também torna difícil para os astrônomos identificar estrelas de forma individual.

O núcleo do NGC 6642, mostrado na imagem acima feita pelo telescópio espacial Hubble, é particularmente denso, fazendo desse aglomerado um alvo observacional difícil para a grande maioria dos telescópios. Além disso, ele ocupa um posição bem central na nossa galáxia, significando normalmente a obtenção de imagens de várias estrelas que não pertencem a esse aglomerado.

Contudo, usando o poder da Advanced Camera for Surveys (ACS) do Hubble, os astrônomos podem identificar e remover essas estrelas que não pertencem ao aglomerado e assim conseguem fazer uma imagem com incrível detalhe do centro do aglomerado. Usando a câmera ACS do Hubble os astrônomos já haviam feito muitas descobertas interessantes sobre o NGC 6642. Por exemplo, as estrelas errantes azuis (estrelas que aparentemente possuem uma idade diferente das demais estrelas do aglomerado), foram vistas neste aglomerado globular, quee é conhecido por ser carente de estrelas de pequena massa.

Fonte: ESA

A medida da temperatura de estrelas achatadas

A maioria das estrelas, devido à rotação e sua natureza gasosa, mostram um achatamento nos polos.
estrelas com diversos graus de achatamento nos polos
© IAA (estrelas com diversos graus de achatamento nos polos)
Mas algumas giram em velocidades próximas à da ruptura - uma velocidade limite que, se superada, provocaria a ruptura da estrela - fazendo com que seja de forma claramente ovalada (que também pode ocorrer em estrelas binárias devido à atração mútua). Para determinar a temperatura destas estrelas distorcidas é usado teorema de von Zeipel, que apesar de seu uso difundido por quase um século, nunca foi livre de debate. Agora, Antonio Claret, do Instituto de Astrofísica de Andaluzia (IAA-CSIC), mostrou que esse teorema mostra desvios graves e devem ser incluídos em um modelo mais amplo.
Em 1924, o astrofísico Hugo von Edvard Zeipel sueco demonstrou teoricamente que, para estrelas achatadas quentes - com temperaturas superiores a 8.000ºC - a temperatura é proporcional à gravidade local. E introduziu o conceito de "escurecimento por gravidade" que faz com que uma estrela achatada a temperatura nos polos é maior do que no Equador (no Sol, este efeito é dificilmente perceptível, devido à sua baixa taxa de rotatividade).
"O valor que von Zeipel atribuiu para o escurecimento por gravidade tem sido discutido teoricamente e, recentemente, foram publicados trabalhos de observações astronômicas que revelam desvios significativos", disse Claret Antonio. A aplicação de um expoente de escurecimento por gravidade pressupõe um cálculo errôneo da termodinâmica da estrela, que por sua vez envolve a obtenção de valores de massa, luminosidade e idade errados.
Von Zeipel não se equivocou, mas desenvolveu um modelo que deve ser complementado, deve ser também aplicado às estrelas frias, que é resolvido com este novo modelo teórico.
Focando casos de estrelas altamente deformadas e através do uso de equações de transporte de energia mais elaborado, Antonio Claret mostrou as limitações do teorema von Zeipel reconciliando os novos valores teóricos com os observacionais.
Assim, com este novo formalismo, pode ser conhecido o escurecimento por gravidade do interior para a atmosfera das estrelas, e dela derivam uma conclusão importante: o teorema de von Zeipel só se aplica para as regiões mais profundas da estrela e é um caso particular do novo modelo. No entanto, o que os astrofísicos observam são necessariamente as camadas externas, de modo que este novo modelo é a escolha certa para determinar os parâmetros essenciais da estrela com precisão.
Fonte: Instituto de Astrofísica de Andaluzia

segunda-feira, 12 de dezembro de 2011

Gatilho da formação estelar

A imagem composta abaixo combina os dados do observatório de raios-X Chandra e do telescópio espacial Spitzer mostrando a nuvem molecular Cepheus B, localizada na nossa galáxia cerca de 2.400 anos-luz da Terra.

Trigger-Happy Star Formation

© Chandra/Spitzer (Cepheus B)

Uma nuvem molecular é uma região que contém gás interestelar frio e poeira que sobraram da formação da galáxia e contém principalmente hidrogênio molecular.

As observações do Chandra permitiram aos astrônomos captar estrelas jovens dentro e perto da Cepheus B, identificadas por suas emissões fortes de raios-X. Os dados do Spitzer mostram se nas estrelas jovens têm um disco protoplanetário ao redor delas. Esses discos só existem em sistemas muito jovens, onde planetas ainda estão se formando, por isso sua presença é uma indicação da idade de um sistema estelar.
Estes dados fornecem uma excelente oportunidade para testar um modelo de como as estrelas se formam. Um estudo a respeito sugere que a formação de estrelas em Cepheus B é principalmente provocada pela radiação de uma estrela enorme e brilhante, a HD 217086, que está fora da nuvem molecular.

A região de Cepheus B possui estrelas com cerca de um milhão de anos, e 70 a 80% delas têm discos protoplanetários. A região imediatamente ao lado de Cepheus B contêm estrelas com dois a três milhões de anos, e cerca de 60% delas têm discos. Na região mais externa à Cepheus B as estrelas têm aproximadamente de três a cinco milhões de anos, e cerca de 30% delas têm discos. Este aumento da idade enquanto as estrelas estão mais longe de Cepheus B é exatamente o que está previsto no modelo de formação de estrelas.
Diferentes tipos de desenvolvimento estelar são observados em outros ambientes. Por exemplo, a formação do nosso Sistema Solar pode ter sido provocado por uma explosão de supernova.

Fonte: Harvard-Smithsonian Center for Astrophysics

domingo, 11 de dezembro de 2011

Uma supernova antiga é revelada

Aproximadamente a 3.700 anos atrás as pessoas na Terra teriam visto uma estrela nova muito brilhante no céu.

supernova Puppis A

© WISE (supernova Puppis A)

À medida que ela foi se apagando e sumindo de vista, ela foi sendo eventualmente esquecida, até que os astrônomos modernos encontraram o que restou dela, a chamada Puppis A. Vista como uma nuvem empoeirada e vermelha nessa imagem feita pelo WISE (Wide-field Infrared Survey Explorer) da NASA, a Puppis A é a parte remanescente de uma explosão de supernova.

A Puppis A se formou quando uma estrela massiva terminou sua vida em uma explosão extremamente brilhante e poderosa. As ondas de choque que se expandiram dessa explosão estão aquecendo a poeira e as nuvens de gás ao redor da supernova, fazendo com que brilhem e criem a bela nuvem vermelha que nós podemos observar aqui. Muito do material da estrela original foi violentamente expelido para o espaço. Contudo, uma parte desse material permanece em um objeto incrivelmente denso chamado de estrela de nêutrons. Essa estrela de nêutrons, muito apagada para ser vista nessa imagem, está se movendo a uma velocidade extremamente alta, algo superior a 3 milhões de milhas por hora. Os astrônomos estão perplexos com a absurda velocidade do objeto e apelidaram a estrela de “Bala de Canhão Cósmica”.

Uma parte do gás e da poeira de coloração verde que é observado na imagem acima é proveniente de outra antiga supernova, a remanescente de supernova Vela. Essa explosão aconteceu a aproximadamente 12.000 anos atrás e numa região quatro vezes mais próxima da Terra do que a Puppis A. Se nós tivéssemos  uma visão de raios-X, ambas as remanescentes (Puppis A e Vela) seriam os maiores e mais brilhantes objetos que nós veríamos no céu noturno.

Fonte: NASA

sábado, 10 de dezembro de 2011

O maior vulcão do Sistema Solar

O planeta Marte, como a sonda Phoenix nos mostrou não é parecido com a Terra, ele é um mundo continuo, sem mar, sem suturas, assim descreveu Oliver Morton, um dos pesquisadores especialistas em mapear Marte.

Monte Olympus visto pela sonda Phoenix

© Phoenix (Monte Olympus)

Mas se elevando acima das frequentes tempestades de poeira que assolam Marte, está o Monte Olympus, o maior vulcão conhecido e a maior montanha do nosso Sistema Solar.

O edifício central desse vulcão se eleva a fantásticos 27 quilômetros acima da superfície de Marte, algo 3 vezes mais alto que o Monte Everest acima do mar e 2,6 vezes mais alto que o Monte Mauna Kea, medido desde a sua base. Ele tem 550 km de largura, flanqueado por abismos íngremes e tem uma caldeira complexa que tem 85 km de comprimento, 60 km de largura e 3 km de profundidade  com seis aberturas de crateras se sobrepondo. Sua borda externa é definhada por uma escarpa com 6 km de altura, algo único entre os vulcões de escudo conhecidos em Marte.

Em 2004, a sonda Mars Express fez imagens de lavas antigas nos flancos do Monte Olympos. Com base no tamanho da cratera e na contagem de frequência, a superfície dessa escarpa oeste foi datada com 115 milhões de anos, abaixo de uma região que tem somente 2 milhões de anos de existência, algo recente em termos geológicos e que sugere que a montanha ainda pode estar em processo de atividades vulcânicas.

O Monte Mauna Kea, no Havaí é um exemplo de vulcão de escudo similar só que em menor escala. O tamanho do Monte Olympos é extraordinário pois provavelmente não existe movimento de placas tectônicas. Desse modo, a crosta permaneceu imóvel sobre um chamado ponto quente e o vulcão continuou a despejar lava.

A montanha e poucos outros vulcões da região de Marte conhecida como Tharsis, é visível da Terra, e desde o século 19 os astrônomos vêm observando Marte. O astrônomo Patrick Moore aponta que durante as tempestades de poeira, Schiaparelli descobriu que o seu Nodus Gordis e Olympic Snow eram quase as únicas feições que poderiam ser observadas em Marte.

Monte Olympus visto pela sonda Mariner

© Mariner (Monte Olympus)

Mas somente com as sondas Mariner pôde-se confirmar isso com certeza. Depois da sonda Mariner 9 ter fotografado o Monte Olympus de sua órbita em 1972, ficou claro que a sua altura era muito maior que qualquer montanha na Terra, e então seu nome foi alterado definitivamente para Monte Olympus.

Fonte: Daily Galaxy

sexta-feira, 9 de dezembro de 2011

Alinhamento universal: o cosmo têm direção?

O Universo não tem centro, nem aresta, nem regiões especiais inseridas entre galáxias e luz.

galáxia Triangulum

© Konstantin Mironov (galáxia Triangulum)

Não importa onde você olhe, é a mesma coisa. Este princípio cosmológico, um dos fundamentos da compreensão moderna do Universo, entrou em questão recentemente, no momento em que astrônomos encontraram evidências sutis de uma direção especial no espaço. O primeiro e mais bem estabelecido dado vem da radiação cósmica de fundo em micro-ondas (CMB), a chamada luminescência do Big Bang. Como esperado, a luminescência não é perfeitamente estável, como manchas quentes e frias localizadas no céu. Recentemente, porém, os cientistas descobriram que essas manchas não são distribuídas tão aleatoriamente como quando apareceram pela primeira vez. Elas alinham-se em um padrão que aponta para uma direção especial no espaço.

Mais sugestões de uma seta cósmica vêm a partir de estudos de supernovas, cataclismas estelares que por um curto tempo ofuscam galáxias inteiras. Cosmólogos têm utilizado supernovas para mapear a expansão acelerada do Universo. Estudos estatísticos detalhados revelam que as supernovas estão se movendo ainda mais rápido em uma linha, apontando levemente para fora desta direção especial. Similarmente, astrônomos mediram aglomerados contínuos de galáxias, através do espaço, acima de um milhão de quilômetros por hora em direção a uma área no hemisfério sul. O que poderia significar tudo isso? Talvez nada. “Pode ser um golpe de sorte", diz Dragan Huterer, um cosmólogo da Michigan University, em Ann Arbor, ou poderia ser um erro sutil que tem ocorrido nos dados. Ou, diz Huterer, talvez nós estejamos vendo os primeiros sinais de “algo surpreendente”. 
O primeiro ímpeto de expansão do Universo poderia ter durado um pouco mais do que pensávamos, introduzindo a isso uma predisposição para o que ainda hoje persistisse. Outra possibilidade é que, em grande escala, o Universo poderia ser enrolado como um tubo, curvado em uma direção e plano em outras, de acordo com Glenn D. Starkman, um cosmólogo da Case Western Reserve University. Alternativamente, a chamada energia escura – algo incompreensível acelerando a expansão do Universo – pode agir de maneira diferente em diferentes lugares. Por enquanto, os dados permanecem preliminares, são sinais sutis de que algo pode estar errado com a nossa compreensão padrão do Universo. Os cientistas estão aguardando os dados do satélite Planck, que atualmente mede a CMB a partir de um local tranquilo, a 1,5 milhão de quilômetros acima. Isso irá confirmar medições anteriores desta direção peculiar ou mostrar que são efêmeras. Até então, o Universo poderia estar nos apontando para qualquer lugar.

Fonte: Scientific American Brasil

quinta-feira, 8 de dezembro de 2011

Buraco negro devorando uma anã branca

Novos resultados obtidos pelo telescópio espacial de raios-X Chandra da NASA e o telescópio Magellan do Observatório Las Campanas sugerem que um denso remanescente estelar foi rompido por um buraco negro com milhares de vezes a massa do Sol na NGC 1399, uma galáxia elíptica cerca de 65 milhões de anos luz da Terra.

galáxia NGC 1399

© Chandra e Hubble (galáxia NGC 1399)

A imagem em raios-X captada pelo Chandra são mostrados em azul e são sobrepostas em uma imagem óptica do telescópio espacial Hubble.

“Nós pensamos que estas assinaturas incomuns podem ser explicadas por uma anã branca, que se aproximou muito de um buraco negro e foi destruída pelas forças extremas de maré”, disse Joel Bregman da Universidade de Michigan.

As observações do Chandra mostram que esse objeto é uma fonte de raios-X ultraluminosas (ULX). As fontes ULXs emitem mais raios-X que estrelas, porém menos do que quasares. Sua natureza exata permanece um mistério, mas uma sugestão é que algumas ULXs são buracos negros com massas entre cerca de uma centena de vezes e milhares que da massa solar.
Se confirmada, essa descoberta seria uma forte evidência de um buraco negro com massa intermediária, que tem sido um tema muito debatido, e marcaria a primeira ocorrência de um buraco negro rompendo uma estrela distante.
Este ULX está em um aglomerado globular muito velho e cheio de estrelas. Os astrônomos já suspeitavam que os aglomerados globulares podem conter buracos negros de massa intermediária, mas a evidência conclusiva para isso tem sido difícil.

O par de interação NGC 4038 e NGC 4039 (galáxias Antennae) vistas na imagem a seguir têm 14 ULXs, nas regiões de formação estelar.

interação entre as galáxias NGC 4038 e NGC 4039

© Chandra (interação entre as galáxias NGC 4038 e NGC 4039)

“Os astrônomos já observaram estrelas que foram dilaceradas por buracos negros supermassivos nos centros das galáxias, mas esta é a primeira evidência de um evento como esse em um aglomerado globular”, disse Jimmy Irwin, da Universidade do Alabama que liderou o estudo.
Irwin e seus colegas obtiveram espectros ópticos do objeto usando os telescópios Magellan I e II em Las Campanas, no Chile. Estes dados revelam emissões de gás rico em oxigênio e nitrogênio, mas não hidrogênio, um raro conjunto de sinais provenientes de aglomerados globulares. As condições físicas deduzidas dos espectros sugerem que o gás está orbitando um buraco negro de pelo menos 1.000 massas solares. A quantidade abundante de oxigênio e ausência de hidrogênio indicam que a estrela destruída era uma anã branca, a fase final de uma estrela do tipo solar que queimou seu hidrogênio deixando uma alta concentração de oxigênio. O nitrogênio visto no espectro óptico permanece um enigma.
O trabalho teórico sugere que a perturbação induzida por emissão de raios-X poderia ficar brilhante durante mais de um século, mas deve desaparecer com o tempo.

Fonte: Daily Galaxy

Circulando em tesouros lunares

O Mare Crisium é um dos locais mais propícios de se identificar na Lua. Ele é grande e por si só, não é conectado a nenhum outro mar.

Mare Crisium na Lua

© Philippe Tosi (Mare Crisium na Lua)

Ele tem pouco interesse observacional em sua superfície a não ser as crateras Lick e Yerkes no lado mais raso que abraçam a borda ocidental. Mas ao redor do Mare Crisium existem crateras fascinantes para serem observadas, começando com a cratera com parede brilhante Proclus à direita. A Proclus é uma cratera bem jovem gerada por um impacto oblíquo. Na borda esquerda da imagem acima está uma fascinante cratera com desafios severos para os observadores e para aqueles que desejam fotografá-la. Crateras minúsculas com pequenos halos escuros e canais estreitos estão no interior mas são visíveis apenas nas melhores imagens. A melhor oportunidade de se observar a cratera de halo escuro é provavelmente na Lua Cheia quando os halos se tornam mais evidentes.  Na região da extrema direita localiza-se a cratera Taruntius, que apresenta um interior constituído de fraturas concêntricas. Como mostra essa imagem realizada com o Sol no alto, um quarto do seu interior é coberto com material escuro, provavelmente poeira que irrompeu da erupção de magma que ergueu-se do solo.

Fonte: LPOD

Impasto celeste

A pintura cósmica reproduzida abaixo é composta da encantadora mistura de poeira e de nebulosas escuras.
Sh2 239
© Adam Block (Sh2-239)
Catalogada como Sh2-239 e LDN 1551, a região localiza-se perto da porção terminal sul do complexo de nuvens moleculares de Taurus a uma distância de 450 anos-luz da Terra. Se esticando por aproximadamente 3 anos-luz, a aquarela mostra sinais de objetos estelares jovens mergulhados guiando fluxos dinâmicos no meio ao redor. A imagem acima também inclui perto do centro da cena, um jato de choque vermelho compacto de gás hidrogênio que se localiza perto da posição da fonte de infravermelho IRS5, conhecida por ser um sistema de protoestrelas envoltas por discos de poeira. Um pouco abaixo estão as asas mais largas e mais brilhantes do HH 102, um dos muitos objetos Herbig-Haro da região que nada mais são que nebulosidades associadas com estrelas recém nascidas. Estimativas indicam que a região de formação de estrelas LDN 1551 contém uma quantidade total de material equivalente a 50 vezes a massa do Sol.
Fonte: NASA

quarta-feira, 7 de dezembro de 2011

Estrela vampira revela os seus segredos

Astrônomos obtiveram as melhores imagens até o momento de uma estrela que perdeu a maior parte da sua matéria devido a uma companheira “vampira”.

© ESO (estrelas duplas SS Leporis)

Ao combinar a luz captada por quatro telescópios instalados no Observatório do Paranal do ESO, os astrônomos criaram um telescópio virtual de 130 metros de diâmetro, capaz de observar com uma nitidez 50 vezes superior ao Telescópio Espacial Hubble. Surpreendentemente, os novos resultados mostram que a transferência de matéria de uma estrela para a outra neste sistema duplo é mais suave do que o que seria de esperar.

“Podemos agora combinar a radiação captada pelos quatro telescópios VLT e criar imagens extremamente nítidas muito mais depressa do que anteriormente,” diz Nicolas Blind (IPAG, Grenoble, França), o autor principal do artigo científico que apresenta estes resultados. “As imagens são tão nítidas que podemos, não apenas observar as estrelas orbitando em torno uma da outra, mas também medir o tamanho da maior das duas.”

Os astrônomos observaram o sistema incomum SS Leporis na constelação da Lebre, que contém duas estrelas que orbitam uma em torno da outra em 260 dias. As estrelas estão separadas de uma distância apenas um pouco maior do que a distância entre o Sol e a Terra, sendo que a maior e mais fria das duas estrelas se estende até um quarto desta distância - o que corresponde mais ou menos à órbita de Mercúrio. Devido a esta proximidade, a estrela mais quente já canibalizou cerca de metade da massa da estrela maior.

“Sabíamos que esta estrela dupla era incomum e que o material estava fluindo de uma estrela para a outra,” diz o co-autor Henri Boffin, do ESO. “O que descobrimos no entanto, foi que o modo como a transferência de massa se processa é completamente diferente do previsto por modelos anteriores. A “mordida” da estrela vampira é muito mais suave mas altamente eficaz.”

As novas observações são suficientemente nítidas para vermos que a estrela gigante é menor do que o que se pensava anteriormente, o que torna mais difícil explicar como é que a gigante vermelha perdeu massa para a sua companheira. Os astrônomos pensam agora que, em vez de fluir de uma estrela para a outra, a matéria deve ser expelida pela estrela gigante sob a forma de um vento estelar e capturada deste modo pela companheira mais quente.

“Estas observações demonstraram a capacidade do Interferômetro do Very Large Telescope em produzir imagens e abrem o caminho para futuros estudos sobre estrelas duplas em interação,” conclui o co-autor Jean-Philippe Berger.

Fonte: ESO

Encontrado um exoplaneta muito quente

Astrônomos encontraram um planeta não muito maior do que a Terra, mas tão absurdamente quente que a vida como a conhecemos não é possível existir.

ilustração de um exoplaneta e sua estrela

© Miguel Claro (ilustração de um exoplaneta e sua estrela)

O exoplaneta, chamado de Kepler-21b, é apenas 1,6 vezes maior do que o nosso. Mas ele orbita tão próximo de sua estrela principal que a temperatura em sua superfície é estimada em 1.627 graus Celsius, que é o suficiente para derreter ferro.

Ele foi encontrado através do telescópio espacial Kepler, da NASA, que procura exoplanetas usando o método de trânsito – a baixa na luminosidade de uma estrela causada por um planeta que circula em sua frente, bloqueando parcialmente sua luz.

O exoplaneta Kepler-21b foi posteriormente confirmado com a ajuda do telescópio do Observatório Nacional Kitt Peak, no Arizona.

O Kepler-21b está localizado há 352 anos-luz da Terra. Sua massa é 10 vezes maior que a da Terra, mas ele está a apenas seis milhões de quilômetros de sua estrela progenitora, levando 2,8 dias para completar sua órbita. A Terra, em comparação, gira em torno do Sol a uma distância média de 150 milhões de quilômetros.

A estrela onde o Kepler-21b orbita é a HD 129070, 1,3 vezes maior do que o nosso Sol. É também um pouco mais quente e brilhante, e até mais jovem. Os astrônomos calculam que ela tenha 2,84 bilhões de anos, enquanto o Sol tem 4,6 bilhões.

As descobertas do Kepler poderão ultrapassar o dobro do número de planetas extrassolares conhecidos, atualmente perto dos 700. A nossa Via Láctea abriga bilhões de planetas, mas a maioria está tão distante que é muito difícil de ser detectada.

Fonte: LiveScience

terça-feira, 6 de dezembro de 2011

Planck revela o grande arco vermelho

Imagens obtidas pelo observatório espacial Planck da ESA (agência espacial europeia) revelaram as forças que guiam a formação das estrelas e deram aos astrônomos uma maneira de entender a complexa física que molda o gás e a poeira na nossa galáxia.

Laço de Barnard em torno de Órion

© Planck (Laço de Barnard em torno de Órion)

Onde telescópios terrestres ópticos observam somente um espaço escuro, os olhos sensíveis às microondas do Planck revelam uma miríade de estruturas brilhantes de poeira e gás. Os astrônomos usaram essa capacidade do Planck para pesquisar a região de Órion, que é rica em formação de estrelas, localizada a aproximadamente 1.500 anos-luz de distância da Terra.

A imagem cobre uma grande parte da constelação de Órion. A nebulosa é o ponto brilhante abaixo do centro da imagem. O ponto brilhante à direita do centro é a região ao redor da famosa Nebulosa da Cabeça do Cavalo.

O gigantesco arco vermelho do Laço de Barnard é resultante provavelmente da onda de choque de uma estrela que explodiu dentro da região a aproximadamente dois milhões de anos atrás. A bolha criada durante essa explosão tem aproximadamente 300 anos-luz de diâmetro.

Em contraste com a região de Órion, a região de Perseus é menos vigorosa em termos de formação de estrelas, como mostra o Planck na imagem abaixo, mas mesmo assim ainda se pode ver uma quantidade razoável dessas regiões.

região de Perseus

© Planck (região de Perseus)

Ambas as imagens mostram três processos físicos que estão acontecendo no meio interestelar repleto de poeira e gás. O Planck pode nos mostrar cada um desses processos de forma separada. Nas frequências mais baixas, o Planck mapeia as emissões causadas pelos elétrons de alta velocidade interagindo com os campos magnéticos da galáxia. Um componente difuso adicional surge da rotação das partículas de poeira que emitem radiação nessas frequências.

Em comprimentos de onda intermediários, de alguns milímetros, a emissão é causada pelo gás aquecido das jovens estrelas quentes que se formaram.

Ainda nas altas frequências, o Planck mapeia o calor emitido pela poeira extremamente fria. Isso pode revelar os núcleos mais frios nas nuvens, que estão se aproximando do estado final de colapso, antes que eles renasçam em novas estrelas. As estrelas então dispersam as nuvens ao redor.

O delicado equilíbrio entre a nuvem colapsada e a nuvem dispersada regula o número de estrelas que a galáxia gera. O Planck irá avançar nosso entendimento sobre todo o processo, pois pela primeira vez, ele está nos fornecendo dados sobre os maiores mecanismos de emissão que estão em evolução.

Fonte: Daily Galaxy