sexta-feira, 23 de junho de 2017

As estrelas massivas no Westerlund 1

O aglomerado estelar Westerlund 1 é o lar de algumas das maiores e mais massivas estrelas conhecidas.

Westerlund 1

© Hubble (Westerlund 1)

É liderado pela estrela Westerlund 1-26, uma estrela vermelha supergigante tão grande que, se colocada no centro do nosso Sistema Solar, se estenderia além da órbita de Júpiter.

Além disso, a jovem estrela é o lar de 3 outras supergigantes vermelhas, 6 estrelas hipergigantes amarelas, 24 estrelas Wolf-Rayet e várias estrelas ainda mais incomuns que continuam a ser estudadas. Westerlund 1 está relativamente próxima de um aglomerado de estrelas a uma distância de 15 mil anos-luz, dando aos astrônomos um bom laboratório para estudar o desenvolvimento de estrelas massivas.

A imagem em destaque de Westerlund 1 foi tomada pelo telescópio espacial Hubble em direção à constelação do hemisfério celestial sul do Altar (Ara). Embora atualmente classificado como um aglomerado "super" aberto, o Westerlund 1 pode evoluir para um aglomerado globular de baixa massa ao longo dos próximos bilhões de anos.

Fonte: NASA

quarta-feira, 21 de junho de 2017

Observando um relacionamento estelar volátil

Na biologia, a "simbiose" refere-se a dois organismos que vivem próximos e interagem entre si. Os astrônomos estudaram há muito tempo uma classe de estrelas simbióticas, que coexistem de maneira semelhante.

R Aquarii

© CfA/Chandra/Mt. Lemmon SkyCenter (R Aquarii)

Usando dados do observatório de raios X da Chandra da NASA e outros telescópios, os astrônomos estão adquirindo uma melhor compreensão de quão volátil pode ser este relacionamento estelar próximo.

A R Aquarii (R Aqr, na forma abreviada) é uma das mais conhecidas estrelas simbióticas. Localizada na constelação de Aquarius, ela está uma distância de cerca de 710 anos-luz da Terra, suas mudanças de brilho foram percebidas a olho nu há quase mil anos. Desde então, os astrônomos estudaram este objeto e determinaram que R Aqr não é uma estrela, mas duas: uma anã branca pequena e densa e uma estrela vermelha e gigante.

A estrela gigante vermelha tem suas próprias propriedades interessantes. Em bilhões de anos, nosso Sol se transformará em uma gigante vermelha uma vez que esvazie o combustível nuclear de hidrogênio em seu núcleo e começa a se expandir e esfriar. A maioria das gigantes vermelhas são plácidas, mas algumass pulsam com períodos entre 80 e 1.000 dias como a estrela Mira e sofrem grandes mudanças de brilho. Este subconjunto de gigantes vermelhas é chamado de "variáveis ​​Mira".

A gigante vermelha em R Aqr é uma variável de Mira e sofre mudanças constantes no brilho por um fator de 250 durante sua pulsação, ao contrário de sua companheira anã branca que não pulsa. Há outras diferenças marcantes entre as duas estrelas. A anã branca é cerca de dez mil vezes mais fraca do que a gigante vermelha. A anã branca tem uma temperatura superficial de cerca de 20.000 K enquanto a variável Mira tem uma temperatura de cerca de 3.000 K. Além disso, a anã branca é um pouco menos massiva do que sua companheira, mas porque é muito mais compacta, o campo gravitacional é mais forte. A força gravitacional da anã branca absorve as camadas externas da variável Mira.

Ocasionalmente, material suficiente se acumulará na superfície da anã branca para desencadear a fusão termonuclear de hidrogênio. A liberação de energia deste processo pode produzir uma nova, uma explosão assimétrica que sopra as camadas externas da estrela em velocidades de dezesseis milhões de quilômetros por hora ou mais, bombeando energia e material para o espaço. Um anel externo de material fornece pistas sobre esta história de erupções. Os cientistas pensam que uma nova explosão no ano 1073 produziu este anel. A evidência para esta explosão vem de dados de telescópio óptico, de registros coreanos de uma estrela na posição de R Aqr em 1073 e informações de núcleos de gelo da Antártida. Um anel interno foi gerado por uma erupção no início dos anos 1770. Os dados ópticos (vermelho) em uma nova imagem composta de R Aqr mostram o anel interno. O anel externo é aproximadamente duas vezes maior do que o anel interno, mas é muito fraco para ser visível nesta imagem.

Em 1999 com o lançamento do Chandra, os astrônomos começaram a usar o telescópio de raios X para monitorar o comportamento de R Aqr, dando-lhes uma melhor compreensão do seu comportamento nos últimos anos. Os dados do Chandra (azul) nesta imagem composta revelam um jato de emissão de raios X que se estende para a parte superior esquerda. Os raios X provavelmente foram gerados por ondas de choque causadas ​​pelo material envolvente que atinge o jato.

Como os astrônomos fizeram observações da R Aqr com Chandra ao longo dos anos, em 2000, 2003 e 2005, eles viram mudanças neste jato. Especificamente, as bolhas de emissão de raios X estão se afastando do par estelar a velocidades de cerca de 2,25 e 3 milhões de quilômetros por hora. Apesar de viajar a uma velocidade mais lenta do que o material ejetado pela nova, os jatos encontram pouco material e não diminuem a velocidade. Por outro lado, a questão da nova varrer muito mais material e diminuir significativamente, é explicado devido os anéis não serem muito maiores do que os jatos.

evolução dos jatos na R Aqr

© CfA (evolução dos jatos na R Aqr)

Usando as distâncias das bolhas do binário e assumindo que as velocidades permaneceram constantes, uma equipe de cientistas do Harvard-Smithsonian Center for Astrophysics (CfA) em Cambridge, Massachusetts, estimou que as erupções nas décadas de 1950 e 1980 produziram as gotas. Estas erupções foram menos energéticas e não tão brilhantes quanto a nova explosão em 1073.

Em 2007, uma equipe liderada por Joy Nichols do CfA relatou a possível detecção de um novo jato em R Aqr usando os dados Chandra. Isso implica que outra erupção ocorreu no início dos anos 2000. Se estes eventos menos poderosos e mal compreendidos repetirem a cada poucas décadas, o próximo será devido nos próximos 10 anos.

Alguns sistemas de estrelas binárias contendo anãs brancas foram observados para produzir novas explosões em intervalos regulares. Se R Aqr é uma destas novas recorrentes, e o espaçamento entre os eventos 1073 e 1773 se repete, a nova explosão não deve ocorrer novamente até a década de 2470. Durante este evento, o sistema pode se tornar várias centenas de vezes mais brilhante, tornando-o facilmente visível a olho nu e colocando-o entre as várias dezenas de estrelas mais brilhantes.

Um acompanhamento próximo deste casal estelar será importante para tentar entender a natureza de sua relação volátil.

Fonte: Harvard-Smithsonian Center for Astrophysics

Segue a busca de planetas do tipo terrestre em torno de Proxima Centauri

A equipe da campanha Pálido Ponto Vermelho, que no ano passado descobriu um planeta em torno da estrela mais próxima do Sol (veja), continua a sua busca de planetas do tipo terrestre, tendo lançado esta semana outra iniciativa.

Pontos Vermelhos

© ESO/Red Dots (Pontos Vermelhos)

A campanha Pontos Vermelhos acompanhará os astrônomos na sua busca de planetas em torno das nossas vizinhas mais próximas — Proxima Centauri, Estrela de Barnard e Ross 154 — com o auxílio do HARPS (High Accuracy Radial velocity Planet Searcher), o instrumento caçador de exoplanetas do Observatório Europeu do Sul (ESO). O ESO junta-se a esta experiência científica aberta apresentada em tempo real, que fornecerá ao público e à comunidade científica acesso a dados observacionais da Proxima Centauri à medida que a campanha se for desenrolando.

A equipe científica liderada por Guillem Anglada-Escudé do Queen Mary University of London adquirirá e analisará os dados do instrumento HARPS do ESO e de outros instrumentos durante aproximadamente 90 noites. As observações fotométricas começaram em 15 de junho, enquanto que as observações espectroscópicas começam em 21 de junho.

O HARPS é um espectrógrafo com uma precisão sem precedentes, o descobridor de planetas de pequena massa mais bem sucedido até hoje. Instalado no telescópio de 3,6 metros do ESO em La Silla, o HARPS procura exoplanetas, tentando detectar os desvios mínimos no movimento da estrela gerados pela atração gravitacional de um exoplaneta na sua órbita. O HARPS consegue capturar movimentos que podem ser tão ligeiros como uma pessoa andando a pé (cerca de 3,5 km/hora) a trilhões de km de distância.

Entre as estrelas alvo da campanha Pontos Vermelhos encontra-se Proxima Centauri, para a qual os cientistas suspeitam que exista em sua órbita mais do que um planeta do tipo terrestre. Proxima Centauri é a estrela mais próxima do Sol, a apenas 4,2 anos-luz de distância. Pode ser um dos lugares mais adequados para procurar vida fora do nosso Sistema Solar, à medida que os nossos instrumentos e tecnologias avançam.

No início deste ano o ESO anunciou uma parceria com a Breakthrough Initiatives, que pretende demonstrar uma nova tecnologia que permitirá voo espacial não tripulado ultraleve a uma velocidade de 20% a velocidade da luz. Uma nanosonda deste tipo poderia ser enviada para as três estrelas do sistema Alfa Centauri, do qual a Proxima Centauri é a mais próxima do Sol.

As outras duas estrelas observadas durante a campanha Pontos Vermelhos são a Estrela de Barnard, uma estrela anã vermelha de baixa massa a quase 6 anos-luz de distância, e Ross 154, outra anã vermelha a 9,7 anos-luz de distância. A estrela de Barnard é muito popular na ficção científica, tendo também sido proposta como alvo para futuras missões interestelares, como o projeto Daedalus.

As observações de telescópio serão complementadas por uma campanha de divulgação apoiada pelo ESO e outros parceiros. A campanha Pálido Ponto Vermelho revelou os métodos e os passos usados na ciência, mas os resultados foram apresentados apenas após o processo de aprovação por júri de pares. Desta vez os dados observacionais da Proxima Centauri serão revelados, analisados e debatidos em tempo real.

Colaborações pró-ativas e contribuições por parte de cidadãos e cientistas interessados serão encorajadas através de redes sociais e de um fórum de ferramentas, para além de ferramentas de apoio da Associação Americana de Observadores de Estrelas Variáveis (AAVSO).

Quaisquer observações apresentadas durante neste momento serão logicamente  preliminares e não devem ser usadas ou citadas em literatura de referência. A equipe não produzirá resultados conclusivos, nem declarará qualquer descoberta até ter escrito um artigo científico que seja sujeito a júri de leitura e aceito para publicação.

A campanha Pontos Vermelhos manterá o público informado através do website reddots.space, local onde serão publicados atualizações semanais juntamente com artigos de interesse geral na área e destaques da semana, incluindo contribuições por parte da comunidade. Haverá também lugar para diálogos que ocorrerão na página de Facebook da campanha dos Pontos Vermelhos, na conta Twitter da campanha e na hashtag #reddots.

Não sabemos qual será o resultado da campanha Pontos Vermelhos. Após a aquisição dos dados e sua análise em conjunto com a comunidade, a equipe científica submeterá os resultados a júri de leitura formal. Se forem de fato encontrados exoplanetas em torno destas estrelas, o Extremely Large Telescope do ESO, cuja primeira luz está prevista para 2024, deverá ser capaz de os observar diretamente e caracterizar as suas atmosferas, um passo crucial na procura de evidências de vida além do Sistema Solar.

Fonte: ESO

O asteroide 6 Hebe não é o único progenitor de meteoritos terrestres

A região entre Marte e Júpiter encontra-se repleta de corpos rochosos chamados asteroides. Estima-se que este cinturão de asteroides contenha milhões de pequenos corpos rochosos, sendo que cerca de 1,1 a 1,9 milhões destes objetos têm dimensões superiores a um quilômetro.

asteroide 6 Hebe

© ESO/VLT (asteroide 6 Hebe)

Pequenos fragmentos destes corpos caem frequentemente na Terra sob a forma de meteoritos. Curiosamente, 34% de todos os meteoritos encontrados na Terra são de um tipo particular: condritos-H. Pensa-se que estes meteoritos têm origem no mesmo corpo progenitor, e um potencial suspeito é o asteroide 6 Hebe, o qual pode ser visto na imagem acima.

Com aproximadamente 186 km de diâmetro e com o nome da deusa grega da juventude, 6 Hebe foi o sexto asteroide a ser descoberto, em meados do século XIX. Estas imagens foram obtidas durante um estudo deste pequeno mundo feito com o auxílio do instrumento SPHERE montado no Very Large Telescope (VLT) do ESO, estudo este que pretendia testar a ideia de que os condritos-H teriam origem em 6 Hebe.

Os astrônomos modelaram a rotação e o formato 3D do 6 Hebe, ambos reconstruídos a partir das observações e usaram o modelo tridimensional para determinar o volume da maior depressão em 6 Hebe; muito provavelmente uma cratera de impacto de uma colisão que poderia ter criado vários meteoritos. No entanto, o volume da depressão é 5 vezes menor do que o volume total das famílias de asteroides próximas com composição de condritos-H, o que sugere que 6 Hebe não é afinal a única origem provável dos condritos-H.

Fonte: ESO

segunda-feira, 19 de junho de 2017

Catálogo com novos candidatos a exoplanetas

A equipe do telescópio espacial Kepler da Nasa lançou um catálogo que apresenta 219 novos candidatos a exoplanetas, 10 dos quais são de tamanho quase terrestre e orbitam na zona habitável de sua estrela, que é a distância de uma estrela onde a água líquida poderia agrupar na superfície de um planeta rochoso.

ilustração de exoplanetas orbitando sua estrela

© NASA/JPL-Caltech (ilustração de exoplanetas orbitando sua estrela)

Esta é a versão mais abrangente e detalhada do catálogo de exoplanetas candidatos, que são planetas fora do nosso Sistema Solar, dos primeiros quatro anos de dados do telescópio espacial Kepler. É também o catálogo final da exploração do céu na constelação do Cygnus.

Com o lançamento deste catálogo, derivado de dados publicamente disponíveis no NASA Exoplanet Archive da NASA, existem agora 4.034 candidatos a exoplanetas identificados pelo Kepler. Dos quais, 2.335 foram comprovados como exoplanetas, sendo que cerca de 50 candidatos na zona habitável de tamanho terrestre detectados pelo Kepler, mais de 30 foram comprovados.

Além disso, os resultados usando dados do Kepler sugerem dois agrupamentos de tamanho distintos de planetas pequenos. Ambos os resultados têm implicações significativas para a busca de vida. O catálogo final do Kepler servirá de base para mais estudos para determinar a prevalência e a demografia dos planetas na galáxia, enquanto a descoberta das duas populações planetárias distintas mostra que cerca de metade dos planetas que conhecemos na galáxia não têm superfície, ou está sob uma atmosfera profunda e esmagadora, um ambiente improvável de hospedar a vida.

O telescópio espacial Kepler caça planetas detectando a minúscula queda no brilho de uma estrela que ocorre quando um planeta cruza em frente a ela, chamado de trânsito.

novos candidatos a exoplanetas no catálogo do Kepler

© NASA/Ames Research Center/W. Stenzel (novos candidatos a exoplanetas no catálogo do Kepler)

Esta é a oitava versão do catálogo de candidatos a exoplanetas do Kepler. Os dados coletados permitirão determinar quais as populações planetárias, desde os corpos rochosos do tamanho da Terra até gigantes de gás do tamanho de Júpiter, constituem a demografia planetária da galáxia.

Para garantir que muitos planetas não foram perdidos, a equipe apresentou seus próprios sinais simulados de trânsito do planeta no conjunto de dados e determinou quantos foram identificados corretamente como planetas.

Um grupo de pesquisa aproveitou os dados do Kepler para fazer medidas precisas de milhares de planetas, revelando dois grupos distintos de planetas pequenos. A equipe encontrou uma divisão limpa nos tamanhos de planetas rochosos, do tamanho da Terra e planetas gasosos menores que Netuno. Poucos planetas foram encontrados entre estes agrupamentos.

Usando o Observatório W. M. Keck no Havaí, o grupo mediu os tamanhos de 1.300 estrelas no campo de visão do Kepler para determinar os raios de 2.000 planetas com precisão requintada.

Parece que a natureza geralmente faz planetas rochosos até cerca de 75% maiores do que a Terra. Por razões que os cientistas ainda não entendem, cerca de metade destes planetas absorvem uma pequena quantidade de hidrogênio e hélio que aumentam dramaticamente seu tamanho, se juntando à população mais próxima do tamanho de Netuno.

Fonte: Ames Research Center

O impacto de campos magnéticos sobre estrelas emergentes

Durante décadas, os cientistas pensaram que as linhas do campo magnético que circulavam por estrelas recém-formadas eram poderosas e inflexíveis, criando material formador de estrelas.

ilustração das linhas do campo magnético próximas de protoestrela

© NRAO (ilustração das linhas do campo magnético próximas de protoestrela)

Mais recentemente, os astrônomos encontraram evidências tentadoras de que a turbulência em larga escala, longe de uma estrela nascente, pode arrastar os campos magnéticos à vontade.

Agora, uma equipe de astrônomos utilizando o Atacama Large Millimeter/submillimeter Array (ALMA) descobriu um campo magnético surpreendentemente fraco e desorganizado muito perto de uma protoestrela recentemente emergente. Estas observações sugerem que o impacto dos campos magnéticos na formação de estrelas é mais complexo do que se pensava anteriormente.

Os pesquisadores mapearam o campo magnético em torno da protoestrela Ser-emb 8, que fica a cerca de 1.400 anos-luz de distância na região formadora de estrelas da Serpente. Estas novas observações são as mais sensíveis do campo magnético em pequena escala que cercam uma protoestrela. Elas também fornecem informações importantes sobre a formação de estrelas de baixa massa como nosso próprio Sol.

As observações anteriores com outros telescópios descobriram que os campos magnéticos que cercam algumas protoestrelas formam uma forma clássica de "ampulheta", uma marca registrada de um campo magnético forte, que começa perto da protoestrela e prolonga muitos anos-luz na nuvem circundante de poeira e gás.

O ALMA é capaz de estudar campos magnéticos nas pequenas escalas dentro de grupos formadores de estrelas, mapeando a polarização da luz emitida por grãos de poeira que se alinharam com o campo magnético.

Ao comparar a estrutura do campo magnético nas observações com simulações de supercomputadores de ponta em escalas de tamanho múltiplo, foi possível obter informações importantes sobre as etapas iniciais da formação de estrelas magnetizadas. As simulações que se estendem a partir de 140 UA (unidade astronômica, que é a distância média da Terra ao Sol) da protoestrela até o máximo de 17 anos-luz, foram realizadas pelos astrônomos Philip Mocz e Blakesley Burkhart, do CfA.

orientação do campo magnético na região em torno da protoestrela Ser-emb 8

© ALMA (orientação do campo magnético na região em torno da protoestrela Ser-emb 8)

Na imagem acima a textura representa a orientação do campo magnético na região em torno da protoestrela Ser-emb 8, conforme medido pelo ALMA. A região cinza é a emissão de poeira de comprimento de onda milimétrica.

No caso de Ser-emb 8, os astrônomos pensam que capturaram o campo magnético original em torno da protoestrela, antes que o material de saída da estrela pudesse apagar a assinatura primitiva do campo magnético na nuvem molecular circundante.

Estas observações mostram que a importância do campo magnético na formação de estrelas pode variar amplamente de estrela para estrela. Esta protoestrela parece ter se formado em um ambiente fracamente magnetizado dominado pela turbulência, enquanto as observações anteriores mostram fontes que se formaram claramente em ambientes fortemente magnetizados. Estudos futuros irão revelar o quão comum são cada cenário.

Um artigo que descreve a pesquisa aparece no periódico Astrophysical Journal Letters.

Fonte: National Radio Astronomy Observatory

domingo, 18 de junho de 2017

Uma anã marrom orbitando uma estrela anã branca

As estrelas acabam alcançando a velhice e tornando-se anãs brancas. E algumas nem sequer são afortunadas o suficiente para nascer, tornando-se uma classe de estrelas fracassadas, conhecidas como anãs marrons.

ilustração de uma anã marrom orbitando uma estrela anã branca

© ESO (ilustração de uma anã marrom orbitando uma estrela anã branca)

Os astrônomos apesar de estarem familiarizados com estes objetos, certamente não esperavam encontrar exemplos de ambos em um único sistema de estrelas!

Um novo estudo, usando dados do telescópio espacial Kepler, descobriu um sistema binário consistindo de uma estrela falhada (uma anã marrom) e o remanescente de uma estrela (uma anã branca).

A equipe que fez a descoberta foi composta por pesquisadores do Kavli Institute for Astrophysics and Space Research do Massachusetts Institute of Technology (MIT), do Harvard-Smithsonian Center for Astrophysics (CfA), do Exoplanet Research Institute (iREx) e do Ames Research Center da NASA.

Originalmente, a anã branca foi identificada pelo Sloan Digital Sky Survey (SDSS), designada como WD1202-024, e foi considerada uma estrela solitária. No entanto, ao examinar as curvas de luz das estrelas que foram pesquisadas pela missão K2, o Dr. Saul Rappaport (MIT) e Andrew Vanderburg (CfA) notaram uma queda curiosa em seu brilho.

Considerando que os trânsitos de exoplanetas são conhecidos por provocar pequenos mergulhos em brilho, a curva de luz neste caso mostrou eclipses particularmente profundos e largos. Além disso, entre estes eclipses, houve mudanças de brilho que pareciam ser devidas à componente fria, isto é, a anã marrom, sendo iluminada pela anã branca muito mais quente. Isso também foi inesperado, pois indicava que o objeto em trânsito era bastante grande.

  A equipe elaborou um modelo baseado em dados obtidos da missão K2, da pesquisa SDSS e do telescópio Magellan de 6,5 m. Eles também usaram dados de cinco telescópios terrestres diferentes em três continentes, que incluíam telescópios de 36 cm e 80 cm operados por amadores no Arizona, o telescópio de 1 m no Observatório Astronômico Sul-Africano e o telescópio de 1,6 m em Observatório de Mont-Megantic (OMM) em Quebec.

A partir destes dados combinados, foi deduzido que as observações eram consistentes com uma anã branca quente de 0,4 massa solar sendo eclipsada por uma companheira anã marrom de 0,067 massa solare. Eles também determinaram que estes dois objetos, que são vistos quase próximos, orbitam entre si  com um período de apenas 71 minutos e 12 segundos, o que resulta em uma velocidade de cerca de 100 km/s.

Os astrônomos usaram modelos de computador sofisticados para simular a formação e evolução do WD1202-024. De acordo com seu cenário, o sistema primordial consistiu em uma estrela de massa solar de 1,25 e uma anã marrom que estava em uma órbita de 150 dias uma com a outra. À medida que a estrela envelhecia, começou a se expandir, tornando-se um gigante vermelha que eventualmente conduziu a anã marrom em uma órbita muito mais próxima.

Além disso, os cálculos mostraram que o par primordial deve ter se formado cerca de 3 bilhões de anos atrás, e em menos de 250 milhões de anos, a anã branca começou a canibalizar a anã marrom. Neste ponto, a anã marrom provavelmente será puxada para fora e formará um disco circunstelar em torno da anã branca, da qual irá acumular lentamente o material.

Quando isso acontece, o binário começará a mostrar os sinais de uma variável cataclísmica (CV), que inclui uma curva luminosa cintilante. E no final, é provável que todo o sistema produza um explosão cataclísmica, como uma supernova tipo Ia. Também deve notar-se que este período de 250 anos é a variável pré-cataclísmica mais curta de qualquer sistema binário já descoberto, tornando este achado ainda mais uma raridade.

Os resultados deste estudo foram apresentados na 230ª Reunião da American Astronomical Society. O estudo que descreve suas descobertas, intitulado "WD 1202-024: The Shortest-Period Pre-Cataclysmic Variable", foi recentemente publicado nas Monthly Notices of the Royal Astronomical Society.

Fonte: Bishop's University

O nascimento de uma estrela bebê gigante

Uma equipe de pesquisa internacional usou o Atacama Large Millimeter/submillimeter Array (ALMA) para determinar como o fluxo de gás enigmático é lançado de uma enorme estrela bebê.

ejeção de gás da protoestrela massiva Orion KL Source I

© ALMA (ejeção de gás da protoestrela massiva Orion KL Source I)

A protoestrela massiva está no centro e é cercada por um disco de gás (vermelho). A saída de gás bipolar é ejetada da protoestrela (azul).

Os astrônomos observaram a estrela bebê e obtiveram nítida evidência de rotação na saída. O movimento e a forma do fluxo de saída indicam que a interação das forças centrífugas e magnéticas em um disco em torno da estrela desempenha um papel crucial no grito de nascimento da estrela.

As estrelas são formadas por gás e poeira flutuando no espaço interestelar. Mas, os astrônomos ainda não compreendem completamente como é possível formar as estrelas massivas vistas no espaço. Uma questão fundamental é a rotação do gás. A nuvem primordial gira lentamente no estágio inicial e a rotação se torna mais rápida à medida que a nuvem diminui devido à gravidade. As estrelas formadas em tal processo devem ter uma rotação muito rápida, mas este não é o caso. As estrelas observadas no Universo rodam mais devagar.

Como o momento de rotação se dissipa? Um cenário possível envolve o gás que emana das estrelas bebê. Se o fluxo de saída de gás funcionar, ele pode levar o momento rotativo para longe do sistema. Os astrônomos tentaram detectar a rotação de saída para testar este cenário e entender o mecanismo de lançamento. Em alguns casos, foram encontradas assinaturas de rotação, mas foi difícil de resolver de forma clara, especialmente em torno de estrelas bebê massivas.

A equipe de astrônomos liderada por Tomoya Hirota, professora assistente do Observatório Astronômico Nacional do Japão (NAOJ) e SOKENDAI (Universidade de Pós-Graduação em Estudos Avançados) observou uma enorme estrela bebê chamada Orion KL Source I na famosa Nebulosa de Órion, localizada a 1.400 anos-luz de distância da Terra. A Nebulosa de Órion é a região de formação de estrelas massivas mais próxima da Terra.

As novas observações do ALMA ilustram lindamente a rotação de saída, na mesma direção que o disco de gás em torno da estrela. Isso apóia fortemente a ideia de que o fluxo de saída desempenha um papel importante na dissipação da energia rotacional.

Além disso, o ALMA mostra claramente que o fluxo de saída é lançado não da vizinhança da própria estrela bebê, mas sim da borda externa do disco. Esta morfologia concorda bem com o "modelo de vento de disco magnetocentrifugal". Neste modelo, o gás no disco rotativo move-se para fora devido à força centrífuga e depois se move para cima ao longo das linhas do campo magnético para formar saídas. Embora observações anteriores com o ALMA tenham encontrado evidências favoráveis em torno de uma protoestrela de baixa massa, houve poucas evidências convincentes em torno de protoestrelas massivas porque a maioria das regiões formadoras destas estrelas são bastante distantes e difíceis de investigar em detalhes.

As ondas submilimétricas são uma ferramenta de diagnóstico única para a região mais profunda do fluxo de saída para detectar a rotação.

O ALMA também imaginou a rotação de um jato de gás a partir de um protoestrela de baixa massa. Por favor, leia estas informações em: Detectada faixa de poeira escura equatorial em disco de protoestrela.

Estes resultados foram publicados na revista Nature Astronomy.

Fonte: National Astronomical Observatory of Japan

sábado, 17 de junho de 2017

Encontrado anel em torno de buraco negro "escondido" numa galáxia

Uma galáxia espiral a 70 milhões de anos-luz da Terra acolhe um buraco negro supermassivo com cerca de 50 milhões de vezes a massa do nosso Sol.

NGC 7582

© Capella Observatory/S. Juneau/VLT (NGC 7582)

Estes números soam quase como ficção científica, mas um olhar mais recente no centro desta galáxia comum revelou algo ainda mais bizarro: um anel de poeira, gás e estrelas que abrange 2.000 anos-luz que anula o próprio buraco negro. O resultado foi apresentado na 230ª reunião da American Astronomical Society em Austin, Texas.

A partir de observações anteriores de luz visível, de infravermelho próximo e de raios X, os astrônomos já sabiam que esta galáxia, denominada NGC 7582, era de um tipo raro: o buraco negro em sua região central se abastece de gás, mas dificilmente vemos o gás brilhante sendo puxado para o seu âmago, graças a grandes faixas de poeira e gás que obscurecem nossa visão do núcleo da galáxia.

Este tipo de galáxia ativa "oculta" é raro no sentido de que estas galáxias são difíceis de serem encontradas, mas os astrônomos têm certeza de que realmente superam em número de galáxias ativas "normais" em pelo menos 2 para 1. O que não é claro é o que está fazendo o esconderijo: ss largas faixas de poeira escondem os centros galácticos da visão? Ou uma parede de poeira de alguma forma se aproxima do buraco negro?

Para ajudar a responder a estas questões, Stéphanie Juneau (National Optical Astronomy Observatory e CEA-Saclay, França) e colegas usaram o instrumento MUSE no Very Large Telescope (VLT) no Chile para projetar o centro da galaxia espiral NGC 7582.

O resultado foi mais do que uma imagem atraente, cada um dos 90.000 pixels da imagem veio com um espectro em anexo, o que revela como esta parte da galáxia está se movendo. Usando estas imagens, a equipe de Juneau separou a rotação global de estrelas em torno do centro galáctico da rotação de um anel interno, constituído de poeira, gás e estrelas, que está girando ainda mais rápido do que a própria galáxia.

Observações anteriores demonstraram que o buraco negro está absorvendo material em forma de disco, e estamos vendo este gás em espiral em torno do buraco negro. Este disco de acreção é inferior a dois anos-luz de largura. O anel empoeirado ao seu redor, por outro lado, tem mais de 2.000 anos-luz de extensão.

As imagens também revelaram os contornos de uma saída em forma de cone: gás quente que está emanando do buraco negro. A direção do vento do buraco negro, no entanto, parece ser moldada pelo anel empoeirado, que desvia o vento e protege a galáxia do seu poder.

De onde veio este anel protetor de galáxia? Observações de rádio anteriores mostraram que a galáxia NGC 7582 possui uma pequena cauda de hidrogênio neutro, provavelmente o remanescente da interação com outra galáxia. A NGC 7582 não está compartilhando com nenhum dos seus vizinhos galácticos. Assim, especula-se que a galáxia pode ter experimentado recentemente uma fusão menor, talvez com uma galáxia anã que já estava em órbita em torno dela.

Se a galáxia anã se aproximasse mauito, a galaxia espiral a separaria, enviando grande parte do seu gás para o centro da galáxia maior. A interação poderia ter alimentado o buraco negro, criando ao mesmo tempo o anel empoeirado que protege a galáxia do poder do buraco negro.

  Existem outras maneiras do que fusão para gerar um anel nuclear empoeirado, e o anel provavelmente não é a única coisa escondendo a NGC 7582. Ironicamente, a maneira de entender melhor estas galáxias que abriram buracos negros escondidos é simplesmente encontrar mais deles.

Fonte: Sky & Telescope

Explorando o berçário estelar da Nebulosa de Órion

Astrônomos lançaram uma imagem de um vasto filamento de gás formador de estrelas, a 1.200 anos-luz de distância, no berçário estelar da Nebulosa de Órion.

Nebulosa de Órion

© Dunlap Institute/GBT/WISE (Nebulosa de Órion)

A imagem mostra moléculas de amônia dentro de um filamento longo de 50 anos-luz detectado através de observações de rádio feitas com o telescópio Robert C. Byrd Green Bank (GBT) em West Virginia. Esta imagem da Nebulosa de Órion, um objeto familiar para os astrônomos amadores e profissionais, foi tomada em conjunto com o telescópio Wide-field Infrared Survey Explore (WISE) da NASA. Nesta imagem composta combinando observações em rádio pelo GBT e infravermelho pelo WISE, o filamento de moléculas de amônia aparece em vermelho e o gás da Nebulosa de Órion em azul.

"Nós ainda não entendemos em detalhes como grandes nuvens de gás em nossa Galaxia se colapsam para formar novas estrelas," diz Rachel Friesen, colaboradora do Dunlap Institute for Astronomy & Astrophysics da Universidade de Toronto, no Canadá.

A imagem acompanha o primeiro lançamento dos resultados da Green Bank Ammonia Survey (GAS).

"O amoníaco é um excelente rastreador de gás denso e formador de estrelas, e estes grandes mapas de amônia nos permitirão rastrear os movimentos e a temperatura do gás mais denso. Isso é fundamental para avaliar se nuvens e filamentos de gás são estáveis, ou está passando por um colapso no caminho para formar novas estrelas," diz Friesen.

O objetivo do GAS é pesquisar todas as principais regiões próximas de formação de estrelas na metade norte do Gould Belt, um anel de estrelas jovens e nuvens de gás que circundam todo o céu e atravessam a constelação de Órion. A primeira versão de dados do GAS inclui observações de quatro nuvens Gould Belt: B18 na constelação Taurus, NGC 1333 em Perseus, L1688 em Ophiuchus e Orion A North em Órion.

A pesquisa eventualmente fornecerá uma imagem mais clara sobre uma maior porção do céu das temperaturas e movimentos de gás dentro destes viveiros dinâmicos estelares.

Os resultados da Green Bank Ammonia Survey foram publicados no Journal Astrophysical.

Fonte: Dunlap Institute for Astronomy & Astrophysics

sexta-feira, 16 de junho de 2017

Júpiter é provavelmente o planeta mais antigo do Sistema Solar

Um grupo internacional de cientistas descobriu que Júpiter é o planeta mais antigo do nosso Sistema Solar.

Júpiter

© NASA (Júpiter)

Ao estudar isótopos de tungstênio e molibdênio em meteoritos ferrosos, a equipe constituída por cientistas do Lawrence Livermore National Laboratory, no estado norte-americano da Califórnia, e do Institut für Planetologie da University of Münster, Alemanha, descobriu que os meteoritos são compostos por dois reservatórios nebulosos, geneticamente distintos, que coexistiram, mas permaneceram separados entre 1 e 3-4 milhões de anos após a formação do Sistema Solar.

"O mecanismo mais plausível para esta separação eficiente é a formação de Júpiter, abrindo um intervalo no disco de acreção e impedindo a troca de material entre os dois reservatórios," comenta Thomas Kruijer, do Lawrence Livermore National Laboratory. Anteriormente, Kruijer estava no Institut für Planetologie da University of Münster. "Júpiter é o planeta mais antigo do Sistema Solar e o seu núcleo sólido formou-se bem antes do gás da nebulosa solar se dissipar, o que é consistente com o modelo de acreção do núcleo para a formação do planeta gigante."

Júpiter é o planeta mais massivo do Sistema Solar e a sua presença teve um efeito imenso sobre a dinâmica do disco de acreção solar. A determinação da idade de Júpiter é fundamental para compreender como é que o Sistema Solar evoluiu em direção à sua arquitetura atual. Embora os modelos prevejam que Júpiter se tenha formado relativamente cedo, até agora, a sua formação nunca tinha sido datada.

Não exixtem amostras de Júpiter, em contraste com outros corpos como a Terra, Marte, a Lua e asteroides. Neste estudo foi utilizado análises isotópicas de meteoritos (que são derivados dos asteroides) que o núcleo sólido de Júpiter se formou apenas cerca de 1 milhão de anos após o início da história do Sistema Solar, tornando-o o planeta mais antigo. Através da sua rápida formação, Júpiter agiu como uma barreira efetiva contra o transporte interno de material no disco, potencialmente explicando porque é que o nosso Sistema Solar não possui nenhuma super-Terra (um exoplaneta com uma massa superior à da Terra).

A equipe descobriu que o núcleo de Júpiter cresceu até 20 massas terrestres em apenas 1 milhão de anos, seguido de um crescimento mais prolongado até 50 massas terrestres até pelo menos 3-4 milhões de anos após a formação do Sistema Solar.

As teorias anteriores propuseram que os gigantes gasosos como Júpiter e Saturno envolviam o crescimento de grandes núcleos sólidos entre mais ou menos 10 a 20 massas terrestres, seguido da acumulação de gás sobre estes núcleos. Assim, a conclusão foi que os núcleos dos gigantes gasosos devem ter-se formado antes da dissipação da nebulosa solar, o disco circunstelar de gás e poeira que rodeava o jovem Sol, o que provavelmente ocorreu entre 1 e 10 milhões de anos após a formação do Sistema Solar.

No trabalho, a equipe confirmou as teorias anteriores, mas foi capaz de datar Júpiter com muito maior precisão, até 1 milhão de anos usando as assinaturas isotópicas dos meteoritos. Embora esta rápida acreção dos núcleos tenha sido já modelada, não era possível datar a sua formação.

A maioria dos meteoritos deriva de pequenos corpos localizados no cinturão de asteroides principal entre Marte e Júpiter. Originalmente, estes corpos provavelmente formaram-se numa região muito maior de distâncias heliocêntricas, como sugerido pelas distintas composições químicas e isotópicas dos meteoritos e pelos modelos dinâmicos, indicando que a influência gravitacional dos gigantes gasosos levou à dispersão de corpos pequenos no cinturão de asteroides.

Um artigo foi publicado na revista Proceedings of the National Academy of Sciences.

Fonte: Lawrence Livermore National Laboratory

Novas evidências de que todas as estrelas nascem aos pares

Será que o nosso Sol teve um gêmeo quando nasceu há 4,5 bilhões de anos?

sistema estelar triplo em formação num disco de poeira na nuvem molecular de Perseu

© ESO/ALMA (sistema estelar triplo em formação num disco de poeira na nuvem molecular de Perseu)

Quase certeza que sim, embora não tenha sido um gêmeo idêntico. E, segundo uma nova análise por um físico teórico da Universidade da Califórnia, em Berkeley, e por uma radioastrônoma do Smithsonian Astrophysical Observatory da Universidade de Harvard, também ocorre com todas as outras estrelas parecidas com o Sol no Universo.

Muitas estrelas têm companheiras, incluindo a nossa vizinha mais próxima, Alpha Centauri, um sistema triplo. Os astrônomos há muito que procuram uma explicação. Será que os sistemas binários e triplos nascem dessa maneira? Será que uma estrela capturou outra? Será que as estrelas duplas por vezes se separam e se tornam estrelas individuais?

Os astrônomos até procuraram uma companheira do nosso Sol, uma estrela a que apelidaram Nêmesis porque era suposto ter lançado um asteroide até à órbita da Terra, asteroide este que colidiu com o nosso planeta e exterminou os dinossauros. Ela nunca foi encontrada.

A nova asserção baseia-se num levantamento, no rádio, de uma nuvem molecular gigante repleta de estrelas recém-formadas na direção da constelação de Perseu e num modelo matemático que pode explicar as observações de Perseu somente se todas as estrelas parecidas com o Sol nascerem com uma companheira.

O único modelo que consegue reproduzir os dados é aquele no qual todas as estrelas formaram inicialmente binários largos, ou seja, quando duas estrelas estão separadas por mais de 500 UA (unidade astronômica, onde 1 UA é a distância média entre o Sol e a Terra, cerca de 150 milhões de quilômetros). Uma companheira larga do nosso Sol estaria 17 vezes mais distante do Sol do que o seu planeta mais distante da atualidade, Netuno.

Com base neste modelo, o gêmeo do Sol provavelmente escapou e misturou-se com todas as outras estrelas na nossa região da Via Láctea, para nunca mais ser visto.

Os astrônomos especulam sobre as origens dos sistemas binários e múltiplos há já centenas de anos e, nos últimos anos, criaram simulações de computador do colapso de massas de gás para compreender como é que se podem condensar, sob a gravidade, para formar estrelas. Também simularam a interação de muitas estrelas jovens recentemente liberadas das suas nuvens gasosas. Há alguns anos, uma destas simulações, por Pavel Kroupa da Universidade de Bona, Alemanha, levou-o a concluir que todas as estrelas nasciam como binárias.

No entanto, as evidências diretas permanecem escassas. À medida que os astrônomos procuram estrelas cada vez mais jovens, encontram uma proporção maior de binários, mas o porquê ainda é um mistério.

Os astrônomos já sabem há várias décadas que as estrelas nascem dentro de casulos em forma de ovo chamados núcleos densos, espalhados por imensas nuvens frias de hidrogênio molecular, o berçário das jovens estrelas. Através de um telescópio óptico, estas nuvens parecem buracos no céu estrelado, porque a poeira que acompanha o gás bloqueia a luz tanto das estrelas no seu interior como das estrelas no plano de fundo. As nuvens podem ser estudadas por radiotelescópios, dado que os frios grãos de poeira no seu interior emitem radiação nestas frequências e as ondas de rádio não são bloqueadas pela poeira.

A nuvem molecular de Perseu é um destes berçários estelares, localizada a cerca de 600 anos-luz da Terra e mede aproximadamente 50 anos-luz de diâmetro. No ano passado, uma equipe de astrônomos completou um estudo com o VLA (Very Large Array), uma rede de radiotelescópios no estado norte-americano do Novo México, para observar a formação de estrelas dentro da nuvem. Com o nome VANDAM (VLA Nascent Disk and Multiplicity Survey), foi o primeiro levantamento completo de todas as estrelas jovens numa nuvem molecular, isto é, estrelas com menos de 4 milhões de anos, incluindo estrelas individuais e múltiplas com separações até mais ou menos 15 UA. Este levantamento catalogou todas as estrelas múltiplas com uma separação aproximadamente equivalente ao raio da órbita de Urano de 19 UA.

O levantamento VANDAM produziu um censo de todas as estrelas da Classe 0, aquelas com menos de 500.000 anos, e da Classe I, aquelas entre 500.000 e 1 milhão de anos. Ambos os tipos de estrelas são tão jovens que ainda não queimam hidrogênio para produzir energia.

Os resultados do VANDAM combinados com observações adicionais revelaram os casulos em forma de ovo ao redor das estrelas jovens. Estas observações adicionais provêm do Gould Belt Survey com a câmara SCUBA-2 acoplada ao telescópio James Clerk Maxwell no Havaí. Ao combinar estes dois conjuntos de dados, os pesquisadores produziram um censo robusto das populações binárias e individuais em Perseu, totalizando 55 estrelas jovens em 24 sistemas múltiplos, todos binários à exceção de cinco, e 45 sistemas individuais.

Usando estes dados, descobriu-se que todos os sistemas binários amplamente separados eram sistemas muito jovens, contendo duas estrelas de Classe 0. Estes sistemas também tendem a estar alinhados com o eixo longo do núcleo denso em forma de ovo. As estrelas binárias ligeiramente mais velhas, de Classe I, estavam mais próximas umas das outras, muitas separadas por cerca de 200 UA, e não apresentavam a tendência para se alinhar com o eixo longo do ovo.

Os pesquisadores modelaram matematicamente vários cenários para explicar esta distribuição estelar, assumindo a formação típica, a separação e os tempos de encolhimento orbital. Eles concluíram que a única maneira de explicar as observações passa por assumir que todas as estrelas com massas parecidas à do Sol começam como binários largos de Classe 0 em núcleos densos em forma de ovo, e que aproximadamente 60% dos sistemas duplos se separam ao longo do tempo. O resto encolhe para formar binários íntimos.

Esta teoria implica que cada núcleo denso, que tipicamente corresponde a algumas massas solares, converte duas vezes mais material em estrelas do que se pensava anteriormente.

Um artigo foi aceito para publicação na revista Monthly Notices of the Royal Astronomical Society.

Fonte: University of California

quinta-feira, 15 de junho de 2017

Descobertas 23 novas chuvas de meteoros

No último dia 5 de junho, a IAU (International Astronomical Union) publicou em seu site oficial, uma atualização da lista de chuva de meteoros. A boa notícia é que mais 23 novos radiantes de chuvas de meteoros, enviados pela BRAMON (Brazilian Meteor Observation Network), compuseram esta atualização.

o brilho de uma aurora e o clarão de um meteoro

© Bjørnar G. Hansen (o brilho de uma aurora e o clarão de um meteoro)

Agora, os radiantes descobertos da BRAMON, já somam 25. Veja descoberta anterior em: Descobertos dois novos radiantes nos céus austrais.

Estes 23 novos radiantes foram descobertos utilizando-se um novo processo de busca. Para os dois primeiros radiantes, Epsilon Gruids e August Caelids, todas as etapas de busca, testes e validação, foram realizados de forma manual; isto é, alguns cálculos eram efetuados à mão e uma ou outra parte era feita em planilhas eletrônicas. Era um método totalmente válido e seguro. Infelizmente, consumia muito tempo para os testes e exigia que a base de dados fosse fracionada a fim de facilitar o processo.

A condução das primeiras descobertas havia ficado dividida entre Carlos Di Pietro (SP), Lauriston Trindade (CE) e Marcelo Zurita (PB). E foi nítida a percepção que tiveram de que, o processo manual de cálculos era pouco produtivo. Neste momento começa a surgir a participação de Leonardo Amaral (SP), que a partir do início do entendimento dos aspectos físicos que compunham as órbitas dos meteoros, começa a desenvolver uma aplicação para automatizar os cálculos.

Todas as as buscas estão amparadas pela metodologia de similaridade orbital. Então, foi criada uma aplicação que pudesse agrupar os meteoros dentro de margens de similaridade. Surgia o Encontreitor.

Com a implementação de novas funcionalidades, o Encontreitor passou de um simples buscador de agrupamentos para uma suíte completa. Assim, todo o fluxo da busca, identificação, testes de similaridade, comparação com chuvas já existentes e busca por corpos parentais poderiam ser integrados, agilizando o processamento.

A BRAMON figura como uma importante rede de monitoramento de meteoros mantendo sua base de dados aberta e em parceria com outras grandes redes de monitoramento pelo mundo. Artigos já publicados pela EDMOND (European viDeo MeteOr Network Database) citam  a BRAMON como parceira e com meteoros de sua base integrando pesquisas.

Para se ter uma ideia, a base da BRAMON para a busca inicial de novos radiantes possuía algo em torno de 4.200 órbitas de meteoros. Hoje, a BRAMON consegue processar centenas de milhares de órbitas, com extrema rapidez, eficiência e qualidade. Devolvendo alta produtividade e segurança.

A chuva de meteoros de maior destaque acontece todos os anos próximo do dia 16 de novembro, e tem seu radiante, ou seja, o ponto no céu de onde parecem emanar os meteoros, na constelação austral da Baleia, cujo radiante foi denominado Cetídeos de Novembro. Para descobrir o radiante, a BRAMON contou com o registro de 55 meteoros, distribuídos em quatro anos de observações. No caso dos Cetídeos de Novembro, as partículas que formam a chuva são dos asteroides 2016 BE1 e 2014 DS22, evidenciadas através dos testes de similaridade orbital.

Confira a lista completa dos 23 novos radiantes e seus dias de pico pode ser vista a seguir.

Nome do radiante Data máxima
Canun Venaticídeos de Janeiro 25 de janeiro
Leonídeos de Fevereiro 18 de fevereiro
Canun Venaticídeos de Fevereiro 21 de fevereiro
phi Ofiucídeos 11 de maio
Sagitarídeos de Junho 3 de junho
lambda Sagitarídeos 4 de junho
gamma Escultorídeos 17 de junho
Cetídeos de Junho 19 de junho
delta2 Gruídeos 22 de junho
Aquarídeos de Junho 23 de junho
Cetídeos de Julho 12 de julho
42 Piscídeos 8 de agosto
Ursae Majorídeos de Agosto 28 de agosto
sigma Perseidas 25 de setembro
Cetídeos de Outubro 30 de setembro
Taurídeos de Outubro 5 de outrubro
lambda Capricornídeos 15 de outrubro
Aurigídeos de Outubro 18 de outrubro
Camelopardalídeos Noturnos 26 de outrubro
phi Capricornídeos 9 de novembro
alpha Aurigídeos de Novembro 13 de novembro
Cetídeos de Novembro 15 de novembro
rho Pupídeos de Dezembro 3 de dezembro

Fonte: BRAMON

Uma galáxia elíptica com conchas exteriores e plumas

Este famoso objeto Messier 89 (M89), uma galáxia elíptica aparentemente simples, é cercado por tênues conchas e plumas.

M89_Mark Hanson

© Mark Hanson (M89)

A causa das conchas é atualmente desconhecida, mas possivelmente forças de maré relacionadas aos detritos deixados após absorver numerosas galáxias pequenas nos últimos bilhões de anos.

Alternativamente, as conchas podem ser como ondulações em uma lagoa, onde uma recente colisão com outra grande galáxia criou ondas de densidade que se propagam através deste gigante galáctico.

Independentemente da causa real, a imagem destaca o crescente consenso de que pelo menos algumas galáxias elípticas se formaram no passado recente e que os halos externos das grandes galáxias não são realmente uniformes, mas têm complexidades induzidas por interações frequentes com galáxias próximas menores.

O halo da Via Láctea é um exemplo desta complexidade inesperada. A M89 é um membro próximo do aglomerado de galáxias Virgo, que está situado a cerca de 50 milhões de anos-luz de distância.

Fonte: NASA

Telescópio capta três objetos celestes numa única imagem

Nesta enorme imagem, dois dos residentes mais famosos do céu dividem os holofotes com um vizinho menos conhecido.

três nebulosas numa só imagem

© ESO/VST (três nebulosas numa só imagem)

À direita vemos a tênue nuvem de gás brilhante conhecida por Sharpless 2-54, no centro temos a Nebulosa da Águia e à esquerda encontra-se a Nebulosa Ômega. Este trio cósmico constitui apenas uma parte do vasto complexo de gás e poeira, no qual estão se formando novas estrelas, as quais iluminam os seus arredores.

Sharpless 2-54, Nebulosa da Águia e Nebulosa Ômega situam-se a cerca de 7.000 anos-luz de distância, as duas primeiras encontram-se na constelação da Serpente, enquanto a última se situa no Sagitário. Esta região da Via Láctea abriga uma enorme nuvem de material pronto para formar estrelas. Estas três nebulosas indicam onde é que regiões desta nuvem se compactaram e colapsaram para formar novas estrelas; a radiação energética emitida pelas estrelas recém-formadas dá origem à emissão de radiação por parte do gás ambiente, o qual apresenta o característico tom rosado das regiões ricas em hidrogênio.

Dois dos objetos da imagem foram descobertos de forma semelhante. Os astrônomos descobriram primeiro aglomerados de estrelas brilhantes tanto em Sharpless 2-54 como na Nebulosa da Águia, identificando posteriormente as enormes e comparativamente fracas nuvens de gás ao redor dos aglomerados. No caso da Sharpless 2-54, o astrônomo britânico William Herschel notou inicialmente o seu brilhante aglomerao estelar em 1784. Este aglomerado, catalogado como NGC 6604 aparece nesta imagem à esquerda do objeto. A nuvem de gás tênue associada permaneceu desconhecida até os anos 1950, quando o astrônomo americano Steward Sharpless a descobriu em fotografias do Atlas do Céu National Geographic-Palomar.

A Nebulosa da Águia não teve que esperar tanto tempo para ser reconhecida em toda a sua glória. O astrônomo suíço Philippe Loys de Chéseaux descobriu inicialmente o seu aglomerado estelar brilhante, NGC 6611, em 1745. Algumas décadas mais tarde, o astrônomo francês Charles Messier observou esta região do céu e também documentou a nebulosidade aí presente, registrando o objeto no seu famoso catálogo com o número 16: Messier 16 (M16).

Com relação à Nebulosa Ômega, de Chéseaux conseguiu observar o seu brilho mais proeminente, tendo identificado o objeto como uma nebulosa em 1745. No entanto, como o catálogo do astrônomo suíço nunca atingiu grande notoriedade, a redescoberta da Nebulosa Ômega por Messier em 1764 levou a que o objeto ficasse conhecido por Messier 17 (M17).

As observações que deram origem a esta imagem foram obtidas pelo telescópio de rastreio do VLT (VST), instalado no Observatório do Paranal do ESO, no Chile. A enorme imagem final foi criada a partir de dezenas de imagens, cada uma com 256 milhões de pixels, captadas pela OmegaCAM, a câmera de grande formato do telescópio. O resultado final, após um longo processamento, totaliza 3,3 bilhões de pixels, uma das maiores imagens já divulgadas pelo ESO.

Fonte: ESO

Uma explicação da formação de sete exoplanetas ao redor de TRAPPIST-1

Astrônomos da Universidade de Amsterdã forneceram uma explicação para a formação do sistema planetário TRAPPIST-1.

ilustração da vista da superfície de um dos planetas do sistema TRAPPIST-1

© ESO/N. Bartmann (ilustração da vista da superfície de um dos planetas do sistema TRAPPIST-1)

O sistema tem sete planetas tão grandes quanto a Terra que orbitam muito perto da sua estrela hospedeira. O ponto crucial é a linha onde o gelo se torna em água. Perto desta linha de neve, as rochas que vaguearam a partir das regiões mais longínquas receberam uma porção adicional de água e aglomeraram-se para formar protoplanetas.

Em fevereiro de 2017, uma equipe internacional de astrônomos anunciou a descoberta de um sistema com sete exoplanetas em torno de uma pequena estrela, TRAPPIST-1. O grande número de planetas relativamente grandes, em órbita tão íntima de uma estrela pequena, veio contra as teorias vigentes da formação planetária. Os pesquisadores da Universidade de Amsterdã desenvolveram agora um modelo que explica as origens do sistema planetário.

Até agora, existiam duas teorias principais para a formação de planetas. A primeira teoria assume que os planetas são formados mais ou menos nas posições onde se encontram. Com TRAPPIST-1, isso é improvável porque o disco a partir do qual os planetas se formam deveria ter sido muito denso. A segunda teoria assume que um planeta se forma muito mais longe no disco e, depois, migra para dentro. Esta teoria também causa problemas ao sistema TRAPPIST-1 pois não explica porque é que os planetas são praticamente todos do tamanho da Terra.

Agora, os cientistas de Amsterdã desenvolveram um modelo onde são os seixos que migram em vez de planetas inteiros. O modelo começa com rochas que flutuam a partir das regiões mais distantes da estrela. Estes seixos são constituídos principalmente por gelo. Quando chegam perto da chamada linha de neve, o ponto quente o suficiente para a água se tornar líquida, recebem uma porção adicional de vapor de água para processar. Como resultado, aglomeram-se para formar um protoplaneta. Em seguida, o protoplaneta move-se um pouco mais perto da estrela. No caminho, "suga" mais rochas como um aspirador até que alcança o tamanho da Terra. O planeta move-se então um pouco mais e abre espaço para a formação do próximo planeta.

O ponto crucial, de acordo com os pesquisadores, é a aglomeração de rochas perto da linha de neve. Ao atravessarem a linha de neve, os seixos perdem o seu conteúdo gelado. Mas esta água é reutilizada pela seguinte "carga" de rochas que viaja desde as regiões mais externas do disco de poeira. No sistema TRAPPIST-1, este processo foi repetido até formar sete planetas.

O líder da pesquisa, Chris Ormel da Universidade de Amsterdã, comentou: "Para nós, TRAPPIST-1 e os seus sete planetas surgiram como uma bem-vinda surpresa. Temos vindo a trabalhar na agregação e "varredura" de planetas há já algum tempo e também estavamos desenvolvendo um novo modelo da linha de neve. Graças à descoberta de TRAPPIST-1 podemos comparar o nosso modelo com a realidade." Num futuro próximo, os cientistas de Amsterdã querem refinar o seu modelo. Irão executar simulações de computador para ver como o modelo se comporta sob condições iniciais diferentes.

Os pesquisadores ainda esperam alguma discussão entre colegas. O modelo é bastante revolucionário porque as rochas viajam da região externa do disco, até à linha de neve, sem muita atividade pelo meio. Ormel acrescenta: "Espero que o nosso modelo ajude a responder à questão de quão único é o nosso próprio Sistema Solar em comparação com outros sistemas planetários."

Um artigo com o modelo foi aceito para publicação na revista Astronomy & Astrophysics.

Fonte: University of Amsterdam

segunda-feira, 12 de junho de 2017

A verdadeira forma do Bumerangue

Esta fotografia mostra a Nebulosa do Bumerangue, uma nebulosa protoplanetária, observada pelo Atacama Large Millimeter/submillimeter Array (ALMA).

Nebulosa do Bumerangue

© ALMA/R. Sahai (Nebulosa do Bumerangue)

A estrutura de fundo em violeta, obtida no óptico pelo telescópio espacial Hubble da NASA/ESA, mostra uma forma clássica de lóbulo duplo com uma região central muito estreita. A capacidade do ALMA em observar o gás molecular frio revela a forma mais alongada da nebulosa (em laranja).

Desde 2003 que esta nebulosa, localizada a cerca de 5.000 anos-luz de distância da Terra, detém o recorde do objeto mais frio conhecido no Universo. Acredita-se que a nebulosa formou-se a partir do envelope de uma estrela nas fases finais da sua vida, a qual teria engolido uma companheira binária menor. É bem possível que esta seja a causa dos fluxos muito frios que apresenta, os quais se encontram iluminados pela luz da estrela central moribunda.

O ALMA observou o disco de poeira central da nebulosa e os fluxos mais externos, que atingem distâncias de quase 4 anos-luz no céu. Estes fluxos encontram-se ainda mais frios que a radiação cósmica de fundo, atingindo temperaturas de 1 kelvin (-272ºC). Estes fluxos expandem-se a uma velocidade de 590.000 km/h.

Fonte: ESO

IC 418: a Nebulosa do Espirógrafo

O que está criando a estranha textura da IC418?

IC 418

© Hubble (IC 418)

Apelidada de Nebulosa do Espirógrafo devido à sua semelhança com os desenhos de um instrumento de desenho cíclico, a nebulosa planetária IC 418 mostra padrões que não são bem compreendidos. Talvez estejam relacionados aos ventos caóticos da estrela central variável, cujo brilho muda imprevisivelmente em apenas algumas horas.

Por outro lado, evidências mostram que há apenas alguns milhões de anos, a IC 418 provavelmente era uma estrela bem compreendida, semelhante ao nosso Sol. Há apenas alguns milhares de anos, a IC 418 provavelmente era uma estrela gigante vermelha comum. Porém, desde que acabou seu combustível nuclear, o invólucro externo começou a se expandir, deixando um núcleo quente remanescente destinado a tornar-se uma estrela anã branca, visível no centro da imagem.

A luz do núcleo central excita os átomos circundantes da nebulosa, causando o seu brilho. A IC 418 encontra-se a cerca de 2.000 anos-luz de distância e estende-se por 0,3 anos-luz. O remanente estelar que atualmente é o núcleo da estrela emite radiação ultravioleta provocando a fluorescência do gás que o rodeia. Esta imagem em falsas cores tirada pelo telescópio espacial Hubble revela os detalhes incomuns. A imagem da nebulosa permite diferenciar a emissão de nitrogênio ionizado (o gás mais afastado do núcleo e o menos quente), a emissão de hidrogênio (na parte intermédia), e a emissão de oxigênio ionizado (o gás mais quente e o mais próximo do núcleo).

Fonte: NASA

Um buraco incomum em Marte

Durante o final do verão no hemisfério sul de Marte, o ângulo da luz solar que atinge a superfície do Planeta Vermelho revela detalhes súbitos no planeta.

buraco na superfície de Marte

© NASA/JPL-Caltech/MRO (buraco na superfície de Marte)

Nesta imagem, a câmera HiRISE da sonda MRO captou uma área de dióxido de carbono congelado na superfície. Parte do gelo de dióxido de carbono aparece derretido, dando à superfície  esta aparência de queijo suíço. Mas além disso, o que se pode observar é um grande buraco incomum, ou uma cratera no lado direito da imagem, com algum gelo de dióxido de carbono claramente visível no assoalho da cavidade.

Ainda não se sabe ao certo o que causou esta cavidade. Poderia ser uma cratera de impacto criada por meteoro, ou uma cavidade colapsada por derretimento ou sublimação do gelo de dióxido de carbono abaixo da superfície.

A sonda MRO tem orbitado Marte por mais de 10 anos, e completou mais de 50.000 órbitas. A sonda MRO tem duas câmeras. A CTX que tem resolução menor e já imageou mais de 99% da superfície de Marte. E a HiRISE, a câmera de alta resolução que é usada para examinar em detalhe, áreas e objetos de interesse, como esta cavidade incomum na superfície de Marte.

Fonte: Universe Today

domingo, 11 de junho de 2017

Ajude os astrônomos a rastrear um planeta gigante com anéis

Você quer ajudar a observar um planeta gigante orbitando uma jovem estrela em Órion?

ilustração de um planeta gigante com anéis

© University of Warwick (ilustração de um planeta gigante com anéis)

Os astrônomos profissionais estão mais uma vez juntando-se com astrônomos amadores em todo o mundo para captar o eclipse da PDS 110, uma jovem estrela em Órion orbitada por um grande planeta (ou talvez uma anã marrom) que é cercada por um sistema de anel e luas.

A estrela jovem J1407 também apresentou um sistema de anel gigantesco cheio de lacunas, presumivelmente de exoluas. O sistema PDS 110, que foi detalhado por Hugh Osborn (Universidade de Warwick, Reino Unido) no Monthly Notices of the Royal Astronomical Society, mostra algumas semelhanças com a estrela J1407. Veja reportagem: J1407.

A PDS 110 é uma estrela na associação Órion OB1a, a noroeste do Cinturão de Órion. A associação, como muitas outras em òrion, contém estrelas jovens e massivas com menos de 20 milhões de anos. A própria PDS 110 possui cerca de 7 a 10 milhões de anos e ainda está crescendo, acumulando material da sua nuvem natal. A massa da estrela é 1,6 vezes a do Sol, mas ao contrário da nossa estrela, ela emite muita luz nos comprimentos de onda infravermelhos, provavelmente emitida pelo gás circundante e poeira aquecida pela radiação da estrela jovem. Como é relativamente brilhante, tem sido objeto de pesquisas há décadas.

Osborn e sua equipe começaram a investigar os dados de algumas pesquisas automatizadas, incluindo o Wide Angle Search for Planets (WASP) e o Kilodegree Extremely Little Telescope (KELT), quando notaram alguns eventos interessantes no brilho da estrela ao longo do tempo. Em novembro de 2008 e janeiro de 2011, a luz proveniente da PDS 110 diminuiu drasticamente por algumas semanas, até cerca de 30% do valor usual.

Osborn descartou outras explicações para estas quedas, incluindo aglomerados de poeira em órbita da estrela, pois qualquer tal aglomeração não duraria, elas se espalhariam rapidamente ao longo de suas órbitas. Em vez disso, ele sugere que há uma companheira com entre 2 e 80 vezes a massa de Júpiter orbitando da PDS 110 a cada 808 dias. Este período corresponde a uma distância média da estrela de 2 UA (unidades astronômicas, ou seja, duas vezes a distância média entre Terra e Sol).

O que torna este sistema tão fascinante é a natureza dos eclipses, visto pela forma na curva de luz que traça o brilho da estrela ao longo do tempo. Enquanto os planetas solitários causam o brilho de uma estrela para mergulhar de forma constante e simétrica, os dois eclipses observados até agora no sistema PDS 110 são muito mais profundos do que o trânsito de exoplaneta típico, e também são irregulares, indicando algum tipo de estrutura do objeto sendo eclipsado.

"O que é excitante é que, durante os dois eclipses, vemos a luz da estrela mudar rapidamente, e isso sugere que há anéis no objeto, mas estes anéis são muitas vezes maiores do que os anéis em torno de Saturno," diz Matthew Kenworthy da Universidade de Leiden.

Um comportamento semelhante foi visto na estrela J1407, que Kenworthy descobriu, mas este sistema tem apenas um eclipse observado. A PDS 110 exibiu este comportamento duas vezes, e se a hipótese de Osborn é correta, o objeto companheiro e seu conjunto massivo de anéis mais uma vez eclipsarão a estrela em setembro de 2017. O sistema de anel parece estar cheio de lacunas e variações de densidade, o que poderia sinalizar a presença de exoluas, como no sistema J1407.

A equipe estará produzindo gráficos de busca e instruções para que os observadores sejam informados antes de setembro. Se o período for confirmado, a PDS 110 será o primeiro sistema de anéis confirmado para uma estrela fora do nosso Sistema Solar. Provavelmente será o alvo da espectroscopia de acompanhamento, que permitirá que Osborn e colegas estimem mais precisamente a massa do companheiro, bem como observações do ALMA que possam revelar material ou companheiros em órbitas mais distantes em torno da estrela.

Fonte: Sky & Telescope

sábado, 10 de junho de 2017

Descoberto ingrediente da vida em torno de estrelas do tipo solar

Duas equipes de astrônomos utilizaram o Atacama Large Millimeter/submillimeter Array (ALMA) instalado no Chile para detectar a molécula orgânica complexa prebiótica de isocianato de metila no sistema estelar múltiplo IRAS 16293-2422.

detectado isocianato de metilo em torno de estrelas jovens do tipo solar

© ESO/DSS 2 (detectado isocianato de metilo em torno de estrelas jovens do tipo solar)

Em astroquímica, uma molécula orgânica complexa é definida como sendo constituída por seis ou mais átomos, sendo pelo menos um dos átomos de carbono. O isocianato de metila contém átomos de carbono, hidrogênio, nitrogênio e oxigênio na configuração química C2H3NO. Esta substância muito tóxica foi a causa principal das mortes em decorrência do trágico acidente industrial de Bhopal em 1984.

Uma das equipes foi liderada por Rafael Martín-Doménech, do Centro de Astrobiología de Madrid, Espanha, e por Víctor M. Rivilla, do INAF-Osservatorio Astrofisico di Arcetri, Florença, Itália, e a outra foi liderada por Niels Ligterink do Observatório de Leiden, Holanda e por Audrey Coutens do University College London, Reino Unido.

“Este sistema estelar não pára de nos surpreender! Depois da descoberta de moléculas de açúcar simples (glicoaldeído), descobrimos agora isocianato de metila. Esta família de moléculas orgânicas está ligada à síntese de peptídeos e aminoácidos, os quais formam, sob a forma de proteínas, a base biológica da vida tal como a conhecemos,” explicam Niels Ligterink e Audrey Coutens.

As capacidades do ALMA permitiram às duas equipes observar esta molécula ao longo do espectro rádio, a vários comprimentos de onda diferentes e bem característicos. As equipes descobriram as impressões digitais químicas únicas desta molécula nas regiões internas densas do casulo de gás e poeira que rodeia as estrelas jovens nas suas fases mais iniciais de evolução. Cada equipe identificou e isolou as assinaturas da molécula orgânica complexa de isocianato de metila. Em seguida, fizeram modelos químicos de computador e experiências em laboratório com o intuito de compreender ao máximo a maneira como esta molécula se forma.

O IRAS 16293-2422 é um sistema múltiplo de estrelas muito jovens situado a cerca de 400 anos-luz de distância na enorme região de formação estelar Rho Ophiuchi, na constelação do Ofiúco, ou Serpentário. Estes novos resultados do ALMA mostram que gás de isocianato de metila rodeia cada uma destas estrelas jovens.

A Terra e os outros planetas do nosso Sistema Solar formaram-se a partir de material que restou da formação do Sol. O estudo de protoestrelas do tipo solar pode, por isso, abrir aos astrônomos uma janela para o passado, permitindo-lhes observar condições semelhantes àquelas que levaram à formação do nosso Sistema Solar há cerca de 4,5 bilhões de anos atrás.

Rafael Martín-Doménech e Víctor M. Rivilla comentam: “Estamos particularmente entusiasmados com estes resultados porque estas protoestrelas são muito semelhantes ao Sol no início da sua vida, apresentando o tipo de condições propícias à formação de planetas do tamanho da Terra. Ao encontrarmos moléculas prebióticas, temos agora outra peça do quebra-cabeças que é compreender como é que a vida começou no  nosso planeta.”

Niels Ligterink complementa: “Além de detectarmos moléculas, queremos também compreender como é que elas se formam. As nossas experiências laboratoriais mostram que o isocianato de metila pode efetivamente formar-se em partículas geladas sob condições de frio extremo, semelhantes às encontradas no espaço interestelar, o que implica que esta molécula, e por conseguinte, a base das ligações dos peptídeos, tem efetivamente uma grande probabilidade de estar presente próximo da maioria das estrelas jovens do tipo solar.”

Esta descoberta ajuda os astrônomos a entenderem melhor a origem da vida na Terra.

Dois artigos deste trabalho serão publicados na mesma edição da revista especializada Monthly Notices of the Royal Astronomical Society.

Fonte: ESO

quinta-feira, 8 de junho de 2017

A massa de estrela é medida através da teoria de Einstein

Astrônomos usaram a visão nítida do telescópio espacial Hubble da NASA para repetir um teste centenário da Teoria Geral da Relatividade de Albert Einstein.

Anel de Einstein

© Hubble (Anel de Einstein)

A equipe Space Telescope Science Institute (STScI) mediu a massa de uma anã branca, um remanescente estelar frio, analisando a quantidade de luz que ela desviou de uma estrela situada atrás dela.

Esta observação representa a primeira vez que o Hubble testemunhou este tipo de efeito criado por uma estrela. Os dados fornecem uma estimativa sólida da massa da anã branca e revelam informações sobre teorias da estrutura e composição da estrela.

Primeiro proposto em 1915, a Teoria Geral da Relatividade descreve como os objetos massivos deformam o espaço, descrita como gravidade. A teoria foi verificada experimentalmente quatro anos depois, quando uma equipe liderada pelo astrônomo britânico Sir Arthur Eddington mediu o quanto a gravidade do Sol desviou a imagem de uma estrela de fundo, durante um eclipse solar, um efeito chamado lente gravitacional.

Este efeito pode ser utilizado para ver imagens ampliadas de galáxias distantes ou, em um alcance mais próximo, para medir pequenas mudanças na posição aparente de uma estrela no céu. Os pesquisadores tiveram que aguardar um século, no entanto, para construir telescópios poderosos o suficiente para detectar este fenômeno de lente gravitacional causado por uma estrela fora do nosso Sistema Solar. A quantidade de deflexão é tão pequena que apenas a nitidez do Hubble foi possível medi-la.

O Hubble observou a estrela anã branca Stein 2051 B à medida que passou na frente de uma estrela de fundo. Durante o alinhamento próximo, a gravidade da anã branca curvou a luz da estrela distante, fazendo com que ela pareça deslocada por cerca de 2 milésimos de segundo da sua posição real, uma variação tão pequena que equivale a observar uma formiga caminhar a mais de 2.400 quilômetros de distância.

A massa da anã branca corresponde às previsões teóricas e é aproximadamente 68% da massa do Sol.

A técnica abre uma nova perspectiva para determinar a massa de uma estrela. Normalmente, se uma estrela tem uma companheira, é possível determinar sua massa medindo o movimento orbital do sistema estelar duplo. Embora, Stein 2051 B tenha uma companheira, uma anã vermelha brilhante, os astrônomos não podem medir com precisão sua massa porque as estrelas estão muito distantes. As estrelas estão a pelo menos 8 bilhões de quilômetros de distância, quase duas vezes a distância atual de Plutão do Sol.

A análise do Hubble também ajudou os astrônomos a verificar de forma independente a teoria de como o raio de uma anã branca é determinado pela sua massa, uma ideia proposta pela primeira vez em 1935 pelo astrônomo americano Subrahmanyan Chandrasekhar, de origem indiana que, em 1983, recebeu o Prêmio Nobel de Física por ter desvendado o princípio do nascimento, evolução e morte das estrelas.

Os pesquisadores identificaram Stein 2051 B e sua estrela de fundo depois de explorar os dados de mais de 5.000 estrelas em um catálogo de estrelas próximas que parecem se mover rapidamente pelo céu. As estrelas com um movimento aparente superior no céu têm uma maior chance de passar na frente de uma estrela de fundo distante, onde a deflexão da luz pode ser medida.

Depois de identificar a Stein 2051 B e mapear o campo estelar de fundo, os pesquisadores usaram a Wide Field Camera 3 do Hubble 3 para observar a anã branca de sete maneiras diferentes ao longo de um período de dois anos enquanto se movia para além da estrela de fundo selecionada.

A equipe analisou a velocidade da anã branca e a direção que estava se movendo para prever quando chegaria a uma posição para curvar a luz das estrelas para observar o fenômeno com o telescópio espacial Hubble.

Foi também medida a pequena quantidade de luz desviada das estrelas. Stein 2051 B aparece 400 vezes mais brilhante do que a estrela de fundo distante. O pequeno movimento da estrela é cerca de mil vezes menor que a medida feita por Eddington em seu experimento de 1919.

A estrela Stein 2051 B é nomeada devido ao seu descobridor, o sacerdote católico romano holandês e astrônomo Johan Stein. A estrela reside a 17 anos-luz da Terra e estima-se que tem cerca de 2,7 bilhões de anos. A estrela de fundo está a cerca de 5.000 anos-luz de distância.

Os pesquisadores planejam usar o Hubble para realizar um estudo  semelhante de lente gravitacional com Proxima Centauri, o vizinho stellar mais próximo do nosso Sistema Solar.

O estudo foi apresentado ontem na 230ª edição do encontro da Sociedade Astronômica Americana em Austin, no Texas.

O estudo será publicado amanhã na revista Science.

Fonte: Space Telescope Science Institute

Descobertas duas novas luas em Júpiter

O maior planeta do Sistema Solar acaba de ganhar mais duas novas luas, elevando o número total de satélites naturais de Júpiter para 69.

Júpiter e sua lua Ganímedes

© NASA/Michael Benson (Júpiter e sua lua Ganímedes)

O anúncio destas descobertas foi realizado neste mês, em dois comunicados do Minor Planet Center, ligado ao Smithsonian Astrophysical Observatory (SAO). Os dois corpos celestes foram encontrados ao acaso, durante buscas por um possível novo planeta dentro do nosso Sistema Solar.

“Nós continuamos as observações em busca de objetos muito distantes no Sistema Solar exterior além do Cinturão de Kuiper, que inclui a busca por novos planetas como o Planeta X,” disse Scott Sheppard, do Instituto Carnegie, em Washington. “Durante estas campanhas de observações, nós encontramos a maioria das luas conhecidas de Júpiter assim como algumas que eram desconhecidas ou estavam perdidas”.

Júpiter possui quatro grandes luas: Ganímedes, Calisto, Io e Europa, e dezenas de pequenos satélites em sua órbita. Por causa das dimensões, eles são difíceis de serem observados e alguns acabam se perdendo. Segundo Sheppard, no início do ano passado existiam 14 satélites perdidos, mas cinco deles foram localizados novamente durante a campanha de observação.

As duas novas luas foram batizadas como S/2016 J1 e S/2017 J1. Elas foram observadas em março de 2016 e março de 2017, respectivamente, mas anunciadas apenas neste mês após observações de comparação. Pela luminosidade refletida, os astrônomos estimam que estes corpos tenham entre um e dois quilômetros de diâmetro.

“Nós confirmamos que não se tratavam de luas perdidas por termos um ano de observações em ambas, o que nos dá duas novas luas em Júpiter, elevando para 69 as luas conhecidas,” disse Sheppard.

A lua S/2016 J1 foi observada no dia 8 de março do ano passado, no observatório Las Campanas, no Chile, e teve a órbita confirmada há seis semanas por um observatório em Mauna Kea, no Havaí. O satélite está a cerca de 20,6 milhões de quilômetros de Júpiter e sua órbita duras 1,65 anos.

Já a lua S/2017 J1 foi identificada no dia 23 de março deste ano, no observatório Cerro Tololo, também no Chile, e confirmada por dados coletados em Mauna Kea. A distância para Júpiter é de 23,5 milhões de quilômetros, com órbita de 2,01 anos.

Um aspecto interessente nestes satélites, e em outros descobertos anteriormente, é que a maioria destes pequenos corpos apresentam órbitas retrógradas, na direção oposta à rotação do planeta, e com inclinação maior de 90 graus. Estas órbitas distantes e irregulares sugerem que estes corpos foram formados em outra região do Sistema Solar exterior e capturados por Júpiter.

“É provável que encontremos mais algumas novas luas nas nossas observações de 2017, mas precisamos reobservar em 2018 para determinar quais descobertas são novas e quais são de luas perdidas,” afirmou o astrônomo.

Fonte: Carnegie Institution for Science