Mostrando postagens com marcador Fast Radio Bursts. Mostrar todas as postagens
Mostrando postagens com marcador Fast Radio Bursts. Mostrar todas as postagens

sábado, 17 de fevereiro de 2024

Estrelas de nêutrons são pistas de explosão de rádio misteriosa

Uma grande pista para a compreensão dos lampejos misteriosos e fugazes de ondas de rádio conhecidas como rajadas rápidas de rádio (FRBs) surgiu quando uma delas explodiu em nossa própria galáxia.

© NASA / JPL-Caltech (ilustração de um magnetar)

Numa ejeção que teria causado a desaceleração da sua rotação, um magnetar é retratado perdendo material para o espaço nesta ilustração. As linhas fortes e torcidas do campo magnético do magnetar (mostradas em verde) podem influenciar o fluxo de material eletricamente carregado do objeto, que é um tipo de estrela de nêutrons.

Uma estrela de nêutrons altamente magnetizada, ou magnetar, apelidada de SGR 1935+2154, emitiu uma explosão semelhante à FRB em 28 de abril de 2020, e de repente os astrônomos tinham uma FRB para estudar em nosso próprio quintal. Desde então, os astrônomos esperam por uma repetição. Em outubro de 2022, ocorreu a explosão esperada. 

Até 2020, quase todos os FRBs conhecidos tinham origem em galáxias distantes. No entanto, cada um deles transmitiu mais energia numa fração de segundo do que todo o Sol emite num ano. Alguns até fizeram isso mais de uma vez! 

Por um tempo, houve tantas ideias sobre o que poderia gerar essas explosões quanto os próprios FRBs. Agora, com o exemplo da Via Láctea, os astrônomos sabem que pelo menos alguns FRBs se originam de magnetares. Mas como os magnetares fazem isso? 

Ao receber um alerta do Burst Alert System a bordo do telescópio espacial Integral da NASA, Chin-Ping Hu (Universidade Nacional de Educação de Changhua, Taiwan) e colegas perguntaram a dois outros telescópios espaciais da NASA - o Neutron Star Interior Composition Explorer (NICER) e o Nuclear Spectroscopic Telescope Array (NuSTAR) - para voltar-se para o magnetar e começar a fazer observações. A equipe observou a estrela de nêutrons rodar em virtude de um ponto quente na sua superfície, que provavelmente marca um dos polos do campo magnético da estrela. À medida que a estrela gira dentro e fora de vista – 3,2 vezes por segundo! – o brilho da estrela de nêutrons parece pulsar. 

O NICER foi projetado especificamente para captar mudanças em escalas de tempo tão rápidas. O NuSTAR, por outro lado, forneceu espectros para acompanhar as observações de brilho, o que ajudou a determinar de onde vinha a emissão. A estrela emite raios X porque é muito quente, enquanto outros raios X provêm de partículas carregadas que se contorcem no poderoso campo magnético da estrela de nêutrons. Em questão de horas, os astrônomos observaram mudanças drásticas ocorrerem na estrela com tamanho de apenas 20 km.

Primeiro, a estrela de nêutrons apresentou uma falha, girando repentinamente mais rápido. Depois, mais lentamente, a taxa de rotação diminuiu ao longo de quatro horas, originando uma forte explosão de ondas de rádio, detectadas no solo pelo radiotelescópio CHIME, no Canadá. Outras quatro horas depois, ocorreu uma segunda falha. 

Durante as falhas, os espectros mostraram que os raios X vinham em grande parte do núcleo. Mas antes e durante a explosão de rádio, entre as falhas, a emissão das partículas aprisionadas magneticamente se fortaleceu. Sabe-se que estrelas de nêutrons apresentam falhas quando a superfície está fora de sincronia com o interior.

Podem ocorrer falhas quando movimentos sob a superfície da estrela de nêutrons tensionam a crosta, que então se rompe em um terremoto estelar. É mais provável que a ruptura aconteça perto do núcleo. Mesmo que a estrela de nêutrons gire apenas uma pequena fração de segundo, a energia envolvida em um terremoto estelar é incrível. Afinal, para um corpo de 20 quilômetros girando em 3,2 segundos, a superfície gira a 11.000 km/h; mudar isso, mesmo que um pouco, requer muita energia. 

O estranho sobre a falha do SGR 1935 é o fato de o aumento de velocidade ter se dissipado tão rapidamente. A maioria das estrelas de nêutrons leva semanas ou meses para se recuperar de uma falha, mas o magnetar voltou à sua taxa de rotação normal em poucas horas. Isso faz sentido, porém, se a falha marcou um terremoto e também liberou partículas carregadas em uma breve rajada de vento. Esse vento teria roubado a rotação da estrela quase tão rapidamente quanto a ganhou. Então, com todas essas partículas pairando num campo magnético superpoderoso, que é muito mais forte do que qualquer outro que possamos produzir na Terra, as condições eram adequadas para um cenário extremo.

Partículas (especificamente, elétrons e seus parceiros de antimatéria, pósitrons) nascem em pares a partir da energia do campo magnético, resultando numa “avalanche”. Os pares elétron-pósitron poderiam, em última análise, ser responsáveis pela explosão repentina de emissão de rádio em um processo semelhante ao do laser. Esta observação conecta uma rara explosão semelhante a uma FRB a uma rara falha dupla e fornece um caminho claro para futuras análises sobre a geração de FRB. 

As rajadas de 2020 e 2022 são as únicas rajadas de ondas de rádio verdadeiramente “altas” que foram detectadas até agora no SGR 1935+2154, embora atividades mais moderadas ocorram com mais frequência. A equipe planeja continuar monitorando o magnetar para observar mais explosões no futuro, fornecendo dados adicionais para ajudar a testar o cenário de criação de pares/vento.

Um artigo foi publicado na revista Nature.

Fonte: Sky & Telescope

sábado, 21 de outubro de 2023

Detectada a mais distante explosão de rádio rápida

Uma equipe internacional de astrônomos detectou uma explosão de ondas de rádio cósmicas remota que durou menos de um milissegundo.

© ESO (ilustração de uma explosão de rádio rápida)

Esta imagem ilustra o percurso da explosão de rádio rápida (FRB, sigla do inglês para Fast Radio Burst), desde a galáxia distante onde teve origem até à Terra, num dos braços em espiral da Via Láctea

Esta FRB é a mais distante descoberta até à data. A sua fonte foi localizada pelo Very Large Telescope (VLT) do ESO numa galáxia tão distante que a sua luz demorou 8 bilhões de anos para chegar até nós. Esta explosão é também uma das mais energéticas alguma vez observada; numa pequena fração de segundo foi liberado o equivalente à emissão total do nosso Sol em 30 anos. 

A descoberta da explosão, denominada FRB 20220610A foi feita em Junho do ano passado pelo radiotelescópio ASKAP na Austrália e bateu o anterior recorde de distância em 50%. 

Confirmando que as FRBs podem ser usadas para medir a matéria "em falta" entre as galáxias, fornecendo assim uma nova forma de "pesar" o Universo. Os atuais métodos para estimar a massa do Universo estão dando respostas contraditórias e pondo em causa o modelo padrão da cosmologia. Se for contada a quantidade de matéria normal no Universo, ou seja, os átomos que nos constituem, verifica-se que falta mais de metade do que deveria existir atualmente. Pensa-se que a matéria em falta está escondida no espaço entre as galáxias, mas pode estar tão quente e difusa que se torna impossível vê-la utilizando técnicas normais. As explosões de rádio rápidas detectam este material ionizado. Mesmo no espaço que está praticamente vazio, estes eventos conseguem perceber todos os elétrons, o que permite medir a quantidade de matéria existente entre as galáxias. 

Encontrar FRBs distantes é fundamental para medir com precisão a matéria em falta no Universo, como demonstrou o falecido astrônomo australiano Jean-Pierre ("J-P") Macquart em 2020. Ele mostrou que quanto mais distante se encontrar uma explosão de rádio rápida, mais gás difuso revelará entre as galáxias. Este fato é agora conhecido como a relação de Macquart. Algumas explosões de rádio rápidas recentes parecem quebrar esta relação. 

As medições recentes confirmam que a relação de Macquart se mantém para além de metade do Universo conhecido. Embora não é conhecido ainda o que causa estas enormes explosões de energia, este trabalho confirma que as explosões de rádio rápidas são acontecimentos comuns no cosmos e que é possível usá-las para detectar matéria entre as galáxias e assim compreender melhor a estrutura do Universo. 

Este resultado representa o limite do que é possível obter com os atuais telescópios, no entanto os astrônomos em breve disporão de instrumentos para detectar explosões ainda mais antigas e distantes, identificar as galáxias de origem e medir a matéria em falta no Universo. A organização internacional Square Kilometre Array Observatory (SKAO) está atualmente construindo dois radiotelescópios, na África do Sul e na Austrália, que serão capazes de encontrar milhares de FRBs, incluindo as muito distantes que não podem ser detectadas com as infraestruturas atuais. 

O Extremely Large Telescope do ESO, um telescópio de 39 metros que está sendo construído no deserto chileno do Atacama, será um dos poucos telescópios capazes de estudar as galáxias de origem de explosões ainda mais distantes do que a FRB 20220610A. 

Este trabalho de pesquisa foi descrito num artigo científico intitulado “A luminous fast radio burst that probes the Universe at redshift 1” publicado na revista Science

Fonte: ESO

domingo, 12 de junho de 2022

Explosão rápida de rádio estranha levanta novas questões

Astrônomos encontraram apenas o segundo exemplo de um Fast Radio Burst (FRB) altamente ativo com uma fonte compacta de emissão de rádio mais fraca, mas persistente entre surtos.

© NRAO (ilustração de um magnetar emitindo ondas de rádio)

A descoberta levanta novas questões sobre a natureza destes misteriosos objetos e também sobre a utilidade como ferramentas para o estudo da natureza do espaço intergaláctico. 

Os cientistas utilizaram o VLA (Karl G. Jansky Very Large Array) e outros telescópios para estudar o objeto, descoberto pela primeira vez em 2019. O objeto, chamado FRB 190520, foi encontrado pelo FAST (Five-hundred-meter Aperture Spherical radio Telescope) na China.

Uma explosão no objeto ocorreu no dia 20 de maio de 2019 e foi encontrada em dados deste telescópio em novembro deste ano. Observações de acompanhamento com o FAST mostraram que, ao contrário de muitos outros FRBs, este emite frequentes e repetidas explosões de ondas de rádio. 

Observações com o VLA em 2020 assinalaram a localização do objeto que permitiu observações no visível com o telescópio Subaru no Havaí para mostrar que se encontra nos arredores de uma galáxia anã a quase 3 bilhões de anos-luz da Terra. As observações do VLA também descobriram que o objeto emite constantemente ondas de rádio mais fracas entre surtos.

Estas características fazem com que este se pareça muito com o primeiro FRB cuja posição foi determinada também pelo VLA em 2016. Este desenvolvimento foi um grande avanço, fornecendo as primeiras informações sobre o ambiente e distância de um FRB. No entanto, a sua combinação de explosões repetidas e emissão de rádio persistente entre explosões, vindas de uma região compacta, distinguiu o objeto de 2016, chamado FRB 121102, de todos os outros FRBs conhecidos até agora.

As diferenças entre FRB 190520 e FRB 121102 e todos os outros reforçam uma possibilidade sugerida anteriormente de que podem haver dois tipos diferentes de FRBs. Os astrônomos sugerem que podem haver dois mecanismos diferentes que produzem FRBs ou que os objetos que os produzem podem agir de forma diferente em fases diferentes da sua evolução. 

Os principais candidatos às fontes de FRBs são as superdensas estrelas de nêutrons que restam depois de uma estrela massiva explodir como uma supernova, ou estrelas de nêutrons com campos magnéticos ultra-fortes, chamadas magnetares. 

Uma característica do FRB 190520 põe em causa a utilidade dos FRBs como ferramentas para o estudo do material entre eles e a Terra. Os astrônomos analisam frequentemente os efeitos do material interveniente sobre as ondas de rádio emitidas por objetos distantes para aprenderem mais sobre este material tênue propriamente dito. Um destes efeitos ocorre quando as ondas de rádio passam pelo espaço que contém elétrons livres. Neste caso, as ondas de frequência mais alta viajam mais depressa do que as ondas de frequência mais baixa. Este efeito, denominado dispersão, pode ser medido para determinar a densidade de elétrons no espaço entre o objeto e a Terra, ou, caso a densidade de elétrons seja conhecida ou assumida, fornecer uma estimativa aproximada da distância ao objeto. O efeito é frequentemente utilizado para fazer estimativas da distância a pulsares. 

Isso não funcionou para FRB 190520. Uma medição independente da distância com base no desvio Doppler da luz da galáxia provocado pela expansão do Universo colocou a galáxia a quase 3 bilhões de anos-luz da Terra. No entanto, o sinal da explosão mostra uma quantidade de dispersão que normalmente indicaria uma distância de aproximadamente 8 a 9,5 bilhões de anos-luz; significando que há muito material perto do FRB que confundiria qualquer tentativa de o utilizar para medir o gás entre galáxias. 

Os astrônomos especularam que FRB 190520 pode ser um "recém-nascido", ainda rodeado por material denso ejetado pela explosão da supernova que deixou para trás a estrela de nêutrons. À medida que este material eventualmente se dissipa, a dispersão do sinal dos surtos também diminuiria. No cenário do "recém-nascido" as explosões repetidas também poderiam ser uma característica dos FRBs mais jovens e diminuir com a idade.

Um artigo foi publicado na revista Nature

Fonte: National Radio Astronomy Observatory

quarta-feira, 2 de março de 2022

Rajadas Rápida de Rádio num local incomum

Estão entre os grandes mistérios do Universo: explosões de radiação que duram cerca de um milésimo de segundo e que só aparecem em radiotelescópios.

© ASTRON (ilustração de um magnetar e a galáxia M81)

Desde a sua descoberta em 2007, os astrónomos têm analisado a causa destes flashes cósmicos. Agora, uma equipe que envolve o Instituto Max Planck para Radioastronomia e a sua antena de 100 metros em Effelsberg encontrou uma destas Rajadas Rápida de Rádio (FRBs, sigla em inglês) à distância mais próxima da Terra até agora, na galáxia espiral Messier 81, a cerca de 12 milhões de anos-luz de distância.

Além disso, a fonte está aparentemente localizada num aglomerado globular desta galáxia, onde menos se esperaria encontrar uma FRB. A maioria dos flashes de rádio aparecem como se vindos do nada, alguns repetem-se periodicamente. Cada um destes surtos emite tanta energia quanto o Sol irradia num dia inteiro. Várias centenas destes flashes cósmicos são disparados todos os dias e têm sido observados por todo o céu. A maioria está localizada a grandes distâncias da Terra, em galáxias a bilhões de anos-luz de distância. 

Pesquisadores liderados por Franz Kirsten (Universidade de Chalmers, Suécia) e Kenzie Nimmo (Universidade de Amesterdã) analisaram agora de perto uma fonte de surtos repetidos detectada em janeiro de 2020 na direção da constelação de Ursa Maior.

Para este fim, os cientistas utilizaram a rede europeia de observação EVN (European VLBI Network). Combinaram os dados de 12 antenas parabólicas, incluindo o telescópio de 100 metros do Instituto Max Planck para Radioastronomia, o instrumento mais sensível do grupo, e foram assim capazes de identificar exatamente onde no céu teve origem a explosão de radiação. A posição coincide exatamente com um aglomerado globular que se encontra na galáxia M81 e que consiste numa densa coleção de estrelas muito antigas. É precisamente este fato que surpreende os pesquisadores, porque até agora as FRBs tinham sido encontradas mais longe no Universo, em lugares onde as estrelas são muito mais jovens.

Para compreender a surpresa, é preciso conhecer a teoria por detrás da causa das explosões rádio. Muitos especialistas pensam que os chamados magnetares estão associadas a elas. Estes são remanescentes muito densos de sóis massivos que explodiram, isto é, estrelas de nêutrons com cerca de 20 quilômetros de diâmetro que giram rapidamente e que têm campos magnéticos extremamente fortes.

Os cientistas pensam, portanto, que a fonte dos surtos rádio da galáxia M81 é um objeto que foi previsto teoricamente, mas nunca visto ao vivo antes: um magnetar que se formou quando uma anã branca tinha acumulado massa suficiente para se desmoronar sob o seu próprio peso. As anãs brancas são consideradas as fases finais de estrelas normais como o nosso Sol, que vivem durante vários bilhões de anos e acabam por transformar-se em objetos densos do tamanho da Terra sem explodir. Muitas destas anãs brancas existem em antigos aglomerados estelares, algumas delas em sistemas binários. Alguns destes pares devem ser tão íntimos que uma parceira "rouba" material da outra. Se uma das anãs brancas acumular massa extra suficiente da sua companheira, pode transformar-se numa estrela ainda mais densa, um magnetar.

Durante as suas medições, os pesquisadores fizeram outra descoberta: alguns dos surtos eram mais curtos do que o esperado e mudaram de brilho em apenas algumas dezenas de nanossegundos. Isto significa que devem vir de um volume minúsculo no espaço, menor do que um campo de futebol e talvez com apenas algumas dezenas de metros em diâmetro.

Sinais ultracurtos semelhantes também são recebidos de um dos objetos mais famosos do céu, o pulsar da Nebulosa do Caranguejo. Esta também é uma estrela de nêutrons, ou seja, o denso remanescente de uma explosão de supernova que foi avistada da Terra na direção da constelação de Touro no ano 1054. À medida que a estrela gira rapidamente sob si própria, emite dois feixes de radiação. Quando passam na direção da Terra, o objeto parece ser um pulsar, piscando como um farol.

Observações futuras deste e de outros sistemas devem ajudar a determinar se a fonte é, realmente, um magnetar ou outra coisa qualquer, como um pulsar com propriedades incomuns, ou mesmo um buraco negro em órbita íntima de uma estrela compacta. 

Fonte: Max Planck Institute for Radio Astronomy

sábado, 1 de agosto de 2020

Estrela morta emite mistura de radiação nunca antes vista

Uma colaboração global de telescópios, incluindo o observatório espacial de alta energia Integral da ESA, detectou uma mistura única de radiação saindo de uma estrela morta na nossa Galáxia, algo que nunca foi visto antes neste tipo de estrela e que pode resolver um mistério cósmico de longa data.

© ESA (ilustração de um magnetar)

A descoberta envolve dois tipos de fenômenos cósmicos interessantes: magnetares e FRBs (Fast Radio Bursts). Os magnetares são remanescentes estelares com alguns dos campos magnéticos mais intensos do Universo. Quando se tornam "ativos", podem produzir rajadas curtas de radiação altamente energética que normalmente não duram nem um segundo, mas são bilhões de vezes mais luminosas que o Sol.

As FRBs são um dos principais mistérios não resolvidos da astronomia. Descobertos pela primeira vez em 2007, estes eventos pulsam intensamente em ondas de rádio durante apenas alguns milissegundos antes de desaparecer e raramente são vistos novamente. A sua verdadeira natureza permanece desconhecida, e nunca houve tal explosão dentro da Via Láctea, com uma origem conhecida, ou a emissão de qualquer outro tipo de radiação além do domínio das ondas de rádio, até agora.

No final de abril, SGR 1935+2154, um magnetar descoberto há seis anos na constelação de Vulpecula, após uma explosão substancial de raios X, tornou-se ativo novamente. Logo depois, foi visto algo surpreendente: este magnetar não apenas irradiava os seus habituais raios X, mas também ondas de rádio.

O IBAS (INTEGRAL Burst Alert System) alertou automaticamente os observatórios de todo o mundo sobre a descoberta em apenas alguns segundos. Isto levou horas antes que quaisquer outros alertas fossem emitidos, permitindo à comunidade científica agir rapidamente e explorar esta fonte em mais detalhe.

Uma curta e extremamente brilhante explosão de ondas de rádio na direção de SGR 1935+2154 foi observada através do radiotelescópio CHIME no Canadá no mesmo dia, no mesmo período da emissão de raios X. Isto foi confirmado de forma independente algumas horas depois pelo STARE2 (Survey for Transient Astronomical Radio Emission 2) nos EUA.

Esta é a primeira ligação observacional entre magnetares e FRBs. Esta ligação apoia fortemente a ideia de que as FRBs emanam dos magnetares e demonstra que as explosões destes objetos altamente magnetizados também podem ser detectadas nos comprimentos de onda de rádio. Os magnetares são cada vez mais populares entre os astrônomos, pois desempenham um papel fundamental na condução de vários eventos transitórios diferentes no Universo, desde explosões de supernovas superluminosas, até explosões distantes e energéticas de raios gama.

No momento da explosão, o magnetar estava no campo de visão de 30 por 30 graus do instrumento IBIS, levando a uma detecção automática pelo pacote de software IBAS do satélite, que é operado pelo Centro de Dados Científicos do Integral em Genebra, alertando imediatamente os observatórios em todo o mundo. Ao mesmo tempo, o SPI (Spectrometer on Integral) também detectou a explosão de raios X, juntamente com outra missão espacial, o HXMT (Hard X-ray Modulation Telescope, ou Insight) da China.

Um artigo foi publicado no periódico The Astrophysical Journal Letters.

Fonte: ESA

sexta-feira, 31 de janeiro de 2020

Nova emissão misteriosa de ondas de rádio

A fonte de explosões rápidas de rádio (FRBs), emissões de ondas de rádio que transmitem em poucos milissegundos a energia que o Sol irradia em um dia, permanece uma questão em aberto na astronomia.


© Gemini Observatory (FRB 180916)

Embora os astrônomos tenham visto mais de 100 FRBs, a maioria é tão breve que é difícil de localizar no céu.

Agora, Benito Marcote (JIVE, Holanda) anunciou recentemente que ele e seus colegas identificaram a localização precisa de uma quinta emissão de ondas de rádio. O resultado fornece informações sobre o meio ambiente em torno dessas fontes ainda misteriosas.

O telescópio Canadian Hydrogen Intensity Mapping Experiment (CHIME) do Canadá descobriu originalmente o flash de rádio, conhecido como FRB 180916.J0158+65. Então, como a fonte continuou emitido onda de rádio, oito antenas de rádio que fazem parte da Rede Européia VLBI captaram a fonte na periferia de uma galáxia espiral. Os astrônomos usaram o telescópio Gemini North, de 8 metros, em Mauna Kea, no Havaí, para criar imagens da região, descobrindo que o flash de rádio produzido tinha um berçário de estrelas recém-nascidas como companhia.

O ambiente em torno desse emissor é uma região que está formando novas estrelas. Isso contrasta com a localização de emissões únicas de FRB, todos os quais foram localizados em galáxias massivas distantes com baixas taxas de formação de estrelas.

Esta última adição aos FRBs com locais conhecidos sugere que os dois tipos (repetitivo e não repetitivo) têm origens diferentes. Mas os astrônomos ainda estão longe de entender quais são essas origens.

Esta descoberta fazia parte do primeiro catálogo de oito repetidores do telescópio CHIME descoberto em 2018, publicada no periódico Astrophysical Journal Letters. Enquanto isso, a colaboração do CHIME anunciou em 10 de janeiro que eles descobriram nove repetidores adicionais em observações de 2019. Mais surpreendente, no entanto, é uma nota de rodapé neste último estudo, que observa que 700 detecções de FRBs ainda estão sendo analisadas e serão publicadas em um catálogo a ser publicado.

Desde que foram descobertos, o número de FRBs conhecidas ficou para trás da multidão de teorias sobre o que poderiam ser. Agora, finalmente, as observações estão começando a superar as teorias: na verdade, estamos no ponto em que a enorme quantidade de dados de rádio coletados por várias pesquisas ultrapassou as capacidades de estudantes ansiosos de pós-graduação e, em vez disso, está sendo passada para algoritmos de redes neurais.

"Até o final de 2020, teremos mais de 1.000 FRBs, pelo menos algumas dezenas que serão localizadas com precisão e podemos responder a algumas perguntas. Ou pelo menos teremos novas perguntas," prevê Jason Hessels (ASTRON, Países Baixos).

Esta descoberta foi publicada na revista Nature.

Fonte: Sky & Telescope

sábado, 27 de fevereiro de 2016

Resolvido o mistério da fonte de ondas de rádio no Universo distante

Pela primeira vez, uma equipe de cientistas rastreou a localização de uma explosão de rádio rápidas (FRB) em uma galáxia elíptica.

galáxia elíptica M87

© J.-C. Cuillandre (galáxia elíptica M87)

A galáxia elíptica M87 mostrada acima é peculiar, aparecendo perto do centro do aglomerado de Virgem, e mostra um número invulgarmente elevado de aglomerados globulares, que são visíveis como pontos fracos que rodeiam o centro brilhante.

Uma enorme massa de estrelas emitiu ondas de rádio que se originou no Universo distante. As explosões de rádio rápidas emitem tanta energia em um milésimo de segundo enquanto o Sol emite em 10.000 anos, mas o fenômeno físico que lhes causa é desconhecido. A descoberta foi feita usando telescópios de rádio do Commonwealth Scientific and Industrial Research Organisation (CSIRO), no leste da Austrália e o telescópio japonês Subaru do National Astronomical Observatory, no Havaí.

Apenas 16 explosões foram já encontrados, mas os astrônomos estimam que elas podem ocorrer 10.000 vezes por dia por todo o céu. As explosões de rádio rápidas podem ser usadas para encontrar matéria no Universo que tinha "desaparecida". O Universo contém 70% de energia escura, 25% de matéria escura e 5% de matéria comum. Mas quando elas se somam a matéria que podemos ver nas estrelas, galáxias e gás de hidrogênio, são encontradas apenas metade da matéria comum, o resto não tem sido visto diretamente.

O telescópio Parkes detectou a FRB 150418 em 18 de abril de 2015. Duas horas depois, o telescópio de CSIRO Compact Array, 400 km ao norte de Parkes, se observou a emissão de rádio. A fonte de rádio durou seis dias antes de desaparecer. A explosão FRB 150418 foi utilizada como uma ferramenta para "pesar" o Universo, ou pelo menos a matéria normal que ele contém.

Enquanto isso, no Havaí o telescópio óptico Subaru de 8,2 metros também encontrou uma galáxia elíptica que pode ser combinada com a fonte de rádio vista pelo CSIRO Compact Array. Seu redshift (0,492) indica que está a cerca de seis bilhões de anos-luz de distância. A galáxia é antiga, e o seu período privilegiado para a formação de estrelas já foi ultrapassado. Isso pode significar que a FRB resultou de duas estrelas de nêutrons se colidindo em vez do recente nascimento de estrelas.

No futuro próximo, o Australian SKA Pathfinder (ASKAP) do CSIRO deve auxiliar na busca de explosões de rádio rápidas.

A descoberta foi publicada na revista Nature.

Fonte: Commonwealth Scientific and Industrial Research Organisation

sexta-feira, 4 de dezembro de 2015

Detectadas ondas de explosão de rádio a 6 bilhões de anos-luz

Astrônomos detectaram uma rápida explosão de rádio a cerca de 6 bilhões de anos-luz de distância, uma das menos de duas dezenas desse tipo de evento descobertos nos últimos dez anos.

ilustração de uma rápida explosão de rádio

© Beijing Planetarium/Jingchuan Yu (ilustração de uma rápida explosão de rádio)

As rápidas explosões de rádio (FRBs) são misteriosas explosões de energia que ocorrem no espaço e que aparecem como rápidos flashes de ondas de rádio nos telescópios da Terra. Essas explosões têm intrigado os astrônomos desde que elas foram reportadas pela primeira vez a uma década atrás. Embora somente 16 dessas explosões tenham sido registradas, eles acreditam que possam existir milhares delas por dia.

Vasculhando mais de 650 horas de dados obtidos pelo telescópio Green Bank (GBT) do NRAO, um grupo internacional de astrônomos descobriu o mais detalhado registro já feito até hoje de uma FRB.

O grupo liderado pelo Dr. Kiyoshi Masui, da Universidade de British Columbia, analisou cerca de 40 terabytes de dados do GBT e identificou mais de 6.000 candidatos a FRB. foram analisados os dados de cada um dos sinais, até restar somente um candidato a FRB 110523.

“Escondida dentro de uma quantidade enorme de dados, nós encontramos um sinal muito peculiar que se ajusta a todas as características de uma FRB, mas com um elemento extra muito importante, que nós simplesmente nunca tínhamos visto antes,” disse o Dr. Jeffrey Peterson, membro da equipe, da Universidade de Carnegie Mellon.

De acordo com os astrônomos, a FRB 110523, originou a cerca de seis bilhões de anos-luz de distância, dentro de uma região altamente magnetizada do espaço, possivelmente interligada a uma supernova ou ao interior de uma nebulosa ativa de formação de estrelas.

Eles descobriram que essa FRB exibia uma Rotação de Faraday, ondas de rádio que se torcem como um parafuso, características que elas adquirem ao passarem através de um poderoso campo magnético.

“Nós agora sabemos que a energia dessa FRB passou através de uma região densa e magnetizada, logo depois de ter se formado. Isso significantemente estreita a definição do ambiente da fonte e o tipo de evento que pode ter originado a explosão,” disse o Dr. Masui.

Usando uma relação entre as duas coisas, os astrônomos foram capazes de determinar suas localizações relativas. A mais forte está muito perto da fonte da explosão, dentro de aproximadamente 100.000 anos-luz, colocando-a dentro da galáxia da fonte.

Somente duas coisas poderiam deixar esse tipo de impressão no sinal, notam os astrônomos: uma densa nebulosa associada com a fonte, ou um local dentro da região central da galáxia hospedeira.

“Juntos, esses dados impressionantes revelam mais sobre uma FRB do que nós já tínhamos visto antes e nos dão importantes variáveis sobre esses eventos misteriosos. Nós também temos uma nova ferramenta impressionante para vasculhar através dos arquivos de dados e descobrir mais exemplos e assim nos colocar mais perto do total entendimento da natureza dessas explosões,” completou o Dr. Masui.

Fonte: Nature