Mostrando postagens com marcador Planetas. Mostrar todas as postagens
Mostrando postagens com marcador Planetas. Mostrar todas as postagens

domingo, 3 de março de 2024

Descoberta nova ligação entre água e formação planetária

Os pesquisadores descobriram vapor de água no disco que rodeia uma estrela jovem, exatamente numa região onde podem estar se formando planetas.

© ALMA (vapor de água ao redor de estrela)

Esta imagem, de novas observações do Atacama Large Millimeter/submillimeter Array (ALMA) mostra o vapor de água em tons azulados. Perto do centro do disco, onde reside a estrela jovem, o meio é mais quente e o gás mais brilhante. Os anéis em tons avermelhados são de observações ALMA anteriores e mostram a distribuição da poeira em torno da estrela.

Para além de ser um ingrediente chave para a vida na Terra, pensa-se que a água desempenha também um papel importante na formação planetária. No entanto, até agora, nunca tínhamos conseguido mapear a forma como a água se distribui num disco frio e estável; o tipo de disco que oferece as condições mais favoráveis para a formação de planetas em torno de estrelas.

As observações revelam, pelo menos, três vezes mais água do que em todos os oceanos da Terra, no disco interior de HL Tauri, uma estrela jovem semelhante ao Sol, situada a 450 anos-luz de distância da Terra, na constelação do Touro. As observações do ALMA espacialmente resolvidas permitem aos astrônomos determinar a distribuição da água em diferentes regiões do disco. 

Foi encontrada uma quantidade significativa de água na região onde existe uma lacuna conhecida no disco de HL Tauri. Estas lacunas em forma de anel são “esculpidas” em discos ricos em gás e poeira por corpos jovens semelhantes a planetas, em órbita da estrela progenitora, à medida que estes vão acumulando material e crescendo. As imagens recentes revelam uma quantidade substancial de vapor de água a uma série de distâncias da estrela que incluem um espaço onde um planeta pode estar se formando atualmente.

Observar água com um telescópio colocado no solo não é uma tarefa fácil, uma vez que o vapor de água que existe em abundância na atmosfera terrestre degrada os sinais astronômicos. O ALMA, operado pelo ESO em conjunto com os seus parceiros internacionais, é uma rede de telescópios instalada no deserto chileno do Atacama, a cerca de 5.000 metros de altitude, e que foi construída num ambiente alto e seco especificamente para minimizar esta degradação, proporcionando condições de observação excepcionais. Até agora, o ALMA é a única infraestrutura capaz de resolver espacialmente a água num disco frio de formação planetária.

Os grãos de poeira que compõem um disco são as sementes da formação planetária, colidindo e aglomerando-se em corpos cada vez maiores que orbitam a estrela. Acredita-se que em locais suficientemente frios, onde a água congela nos grãos de poeira, as partículas aderem mais eficientemente, um local ideal para a formação de planetas.

Os resultados mostram como a presença da água pode influenciar o desenvolvimento de um sistema planetário, tal como aconteceu há cerca de 4,5 bilhões de anos no nosso próprio Sistema Solar. 

Com as atualizações que estão decorrendo no ALMA e com o Extremely Large Telescope (ELT) do ESO que entrará em funcionamento antes do final desta década, a formação planetária e a função que a água desempenha nessa formação se tornarão mais evidentes. Em particular, o instrumento METIS (Mid-infrared ELT Imager and Spectrograph), fornecerá uma visão sem igual das regiões internas dos discos de formação planetária, os locais onde se formam planetas como a Terra.

Um artigo foi publicado na revista Nature Astronomy.

Fonte: ESO

sexta-feira, 2 de fevereiro de 2024

Desvendando os mistérios da formação e evolução planetária

Um sistema solar recentemente descoberto, com seis exoplanetas confirmados e um possível sétimo, está melhorando o conhecimento sobre a formação e evolução planetária.

© UCI (ilustração da estrela anã TOI-1136)

Utilizando um arsenal de observatórios e instrumentos espalhados pelo mundo, uma equipe liderada por pesquisadores da Universidade da Califórnia em Irvine (UCI), compilou as medições mais precisas até à data das massas, propriedades orbitais e características atmosféricas dos exoplanetas.

Os resultados foram obtidos pelo TKS (TESS-Keck Survey), fornecendo uma descrição completa dos exoplanetas que orbitam TOI-1136, uma estrela anã a mais de 270 anos-luz da Terra. O estudo é um seguimento da observação inicial da estrela e dos exoplanetas feita pela equipe em 2019, utilizando dados do TESS (Transiting Exoplanet Survey Satellite) da NASA. Este projeto forneceu a primeira estimativa das massas dos exoplanetas através do registo das variações do tempo de trânsito (VTT), uma medida da atração gravitacional que os planetas em órbita exercem uns sobre os outros. 

Para o estudo mais recente, os astrônomos juntaram os dados do VTT a uma análise da velocidade radial da estrela. Utilizando o telescópio APF (Automated Planet Finder) do Observatório Lick, no Monte Hamilton, no estado norte-americano da Califórnia, e o instrumento HIRES (High-Resolution Echelle Spectrometer) do Observatório W.M. Keck, no Mauna Kea, Havaí, conseguiram detectar ligeiras variações no movimento estelar através do desvio para o vermelho e para o azul do efeito Doppler, possibilitando determinar leituras da massa planetária com uma precisão sem precedentes.

Para obter informação tão exata sobre os planetas deste sistema, a equipe construiu modelos computacionais usando centenas de medições de velocidade radial sobrepostas a dados do  VTT. 

Quando se compara planetas em sistemas solares diferentes, há muitas variáveis que podem diferir com base nas propriedades distintas das estrelas e nas suas localizações em partes diferentes da Galáxia. A observação de exoplanetas no mesmo sistema permite o estudo de planetas que passaram por uma história semelhante. 

Pelos padrões estelares, a estrela TOI-1136 é jovem, com apenas 700 milhões de anos, outra característica que tem atraído caçadores de exoplanetas. O magnetismo, as manchas estelares e as erupções são mais prevalentes e intensas durante esta fase do desenvolvimento de uma estrela, e a radiação resultante impacta e molda os planetas, afetando as suas atmosferas. 

Os exoplanetas confirmados de TOI-1136, TOI-1136 b a TOI-1136 g, estão classificados como "sub-Netunos". O exoplaneta menor tem mais do dobro do raio da Terra, e os outros têm até quatro vezes o raio da Terra, comparáveis aos tamanhos de Urano e Netuno. Segundo o estudo, todos estes planetas orbitam TOI-1136 em menos do que os 88 dias que Mercúrio leva a dar a volta ao nosso Sol.

Outra componente estranha deste sistema solar é a possível presença, ainda não confirmada, de um sétimo planeta. Os pesquisadores detectaram alguns indícios de outra força ressonante no sistema. Quando os planetas estão orbitando perto uns dos outros, podem atrair-se gravitacionalmente uns aos outros.

Os períodos orbitais destes planetas são espaçados de forma semelhante. Quando os exoplanetas estão em ressonância, os puxões são sempre na mesma direção. Isto pode ter um efeito desestabilizador ou, em casos especiais, pode servir para tornar as órbitas mais estáveis. 

Será que vamos encontrar um mundo de rocha fundida, um mundo de água ou um mundo de gelo, todos no mesmo sistema solar? 

Um artigo foi publicado no periódico The Astronomical Journal

Fonte: University of California

terça-feira, 19 de setembro de 2023

Prevista a possível existência de um planeta nos confins do Sistema Solar

Existem muitas anomalias por explicar nas órbitas e na distribuição dos objetos transnetunianos, pequenos corpos celestes localizados nos confins do Sistema Solar.

© F. P. D'Andrea (ilustração de um novo planeta)

Agora, com base em simulações computacionais detalhadas do início do Sistema Solar exterior, pesquisadores do Japão preveem a possibilidade de um planeta com um tamanho semelhante ao da Terra, ainda não descoberto, localizado para lá de Netuno, orbitando o Sol.

Se esta previsão se concretizar, poderá revolucionar a nossa compreensão da história do Sistema Solar. No entanto, é quase certo que, há bilhões de anos, o Sistema Solar formou mais planetas do que estes oito. Embora a maior parte deles já tenha desaparecido ou saído do Sistema Solar, será possível que alguns tenham permanecido e sobrevivido até aos dias de hoje?

A resposta a esta pergunta pode vir dos chamados OTNs (objetos transnetunianos). Como o nome indica, os OTNs são pequenos corpos celestes que orbitam o Sol a uma distância média superior à da órbita de Netuno. Em particular, o distante Cinturão de Kuiper, a região localizada a mais de 50 UA (unidades astronômicas) ou 7,5 bilhões de quilômetros do Sol, contém muitos OTNs. Embora estes objetos representem os restos da formação planetária no Sistema Solar exterior, as suas órbitas e distribuição podem muito bem revelar a presença de planetas por descobrir. 

Num estudo recente, o professor associado Patryk Sofia Lykawka da Universidade de Kindai no Japão e o professor associado Takashi Ito do CfCA (Center for Computational Astrophysics) do NAOJ (National Astronomical Observatory of Japan) resolveram este enigma. Com base na análise teórica das observações e em simulações computacionais de ponta, chegaram à notável conclusão de que um planeta com aproximadamente o tamanho da Terra (1,5 a 3 vezes mais massivo) pode estar à espreita no distante Cinturão de Kuiper! 

Os pesquisadores começaram por analisar em pormenor a estrutura orbital do distante Cinturão de Kuiper, que exibe várias anomalias por explicar. Por exemplo, existe uma grande população de OTNs isolados cujas órbitas estão para além da influência gravitacional de Netuno. Além disso, há um número significativo de OTNs com órbitas altamente inclinadas, juntamente com uma população de "OTNs extremos" cujas órbitas são extremamente difíceis de explicar com os modelos atuais para a formação do Sistema Solar e do Cinturão de Kuiper. 

Com base nestas análises, os cientistas teorizaram que outro planeta para além dos quatro gigantes (Júpiter, Saturno, Urano e Netuno) deve ter influenciado a formação do Cinturão de Kuiper. Para testar a sua hipótese, efetuaram uma série de simulações utilizando os computadores instalados no laboratório de Lykawka e o grupo de PCs de uso geral do NAOJ, usando modelos do Sistema Solar primitivo que existia há cerca de 4,5 bilhões de anos. 

Foram consideradas interações entre os quatro planetas gigantes, um hipotético planeta do Cinturão de Kuiper e um disco de pequenos objetos representando o distante Cinturão de Kuiper primordial. Depois de cada simulação ter sido concluída, as populações de OTNs resultantes, após um período de 4,5 bilhões de anos, foram comparadas com as obtidas a partir de observações modernas para ver se algum dos modelos explicava as anomalias no Cinturão de Kuiper. Notavelmente, os melhores resultados das simulações sugeriam que deveria existir um planeta por descobrir com distâncias entre cerca de 200 e 800 UA. 

Graças à massa palpável e a uma órbita inclinada de cerca de 30°, um tal planeta poderia ter gerado o grande número de OTNs isolados, os OTNs altamente inclinados, bem como os OTNs extremos com órbitas peculiares, de acordo com as observações atuais. 

A descoberta de um novo planeta de tamanho semelhante ao da Terra no Sistema Solar teria, sem dúvida, implicações profundas, como explica o Dr. Lykawka: "Primeiro, o Sistema Solar voltaria a ter oficialmente nove planetas. Além disso, à semelhança do que aconteceu em 2006 quando Plutão foi despromovido da categoria de planeta, teríamos de aperfeiçoar a definição de 'planeta', uma vez que um planeta de tamanho semelhante à Terra, localizado muito para além de Netuno, pertenceria provavelmente a uma nova classe de planetas. Finalmente, as nossas teorias sobre a formação do Sistema Solar e dos planetas também precisariam de ser revistas". 

Na busca deste novo planeta, muitos novos OTNs extremos poderiam ser descobertos no processo, fornecendo informações valiosas sobre a região transnetuniana. Um conhecimento mais pormenorizado da estrutura orbital no Cinturão de Kuiper fornecerá uma melhor compreensão da formação do Sistema Solar exterior, o que também revelará as condições em que os planetas se formaram. 

Um artigo foi publicado no periódico The Astronomical Journal

Fonte: Kindai University

sexta-feira, 11 de agosto de 2023

Nova descoberta acrescenta à compreensão da formação dos planetas

Uma equipe internacional de cientistas descobriu um planeta incomum, da dimensão de Júpiter, em órbita de uma estrela de baixa massa chamada TOI-4860, situada na direção da constelação de Corvo.

© R. Lea (exoplaneta gigante em torno de estrela minúscula)

O gigante gasoso recém-descoberto, denominado TOI-4860 b, é um exoplaneta incomum por duas razões: não se espera que estrelas de tão baixa massa abriguem planetas como Júpiter e o planeta parece ser particularmente enriquecido com elementos pesados. 

O planeta foi inicialmente identificado pelo satélite TESS (Transiting Exoplanet Survey Satellite) da NASA como uma queda de brilho enquanto transitava em frente da sua estrela hospedeira, mas estes dados só por si eram insuficientes para confirmar que se tratava de um planeta. 

A equipe utilizou o Observatório SPECULOOS Sul, situado no deserto do Atacama, no Chile, para medir o sinal em vários comprimentos de onda e validou a sua natureza planetária. Foi também observado o exoplaneta imediatamente antes e depois de desaparecer atrás da sua estrela hospedeira, notando que não havia qualquer alteração na luz. Finalmente, a equipe colaborou com um grupo japonês que utilizou o Telescópio Subaru no Havaí. Juntos mediram a massa do exoplaneta para o confirmar completamente. 

O novo gigante gasoso demora cerca de 1,52 dias para completar uma órbita completa em torno da sua estrela hospedeira, mas como a ela é uma estrela fria e de baixa massa, o planeta pode ser referido como um "Júpiter Ameno". Esta é uma subclasse exoplanetária de particular interesse para os astrônomos que procuram desenvolver as suas observações iniciais e aprender mais sobre a formação deste tipo de planetas. 

Graças ao seu período orbital muito curto e às propriedades da sua estrela hospedeira, a descoberta de TOI-4860 b fornece uma oportunidade brilhante para estudar as propriedades atmosféricas de um Júpiter ameno e aprender mais sobre como os gigantes gasosos se formam. Recentemente, a equipe obteve tempo de observação com o VLT (Very Large Telescope), no Chile, que pretendem utilizar para confirmar vários outros exoplanetas com propriedades semelhantes. 

Um artigo foi publicado no periódico Monthly Notices of the Royal Astronomical Society Letters.

Fonte: University of Liège

domingo, 6 de agosto de 2023

Um mistério do campo magnético no espaço

Pesquisadores da Universidade de Yale poderão ter resolvido um enigma de longa data sobre a razão pela qual certos meteoritos metálicos apresentam vestígios de um campo magnético, uma descoberta que poderá elucidar a formação de dínamos magnéticos no núcleo dos planetas.

© P. Rubin (ilustração de um asteroide metálico)

O magnetismo planetário é fundamental para compreender tanto a estrutura interna como a evolução de muitos corpos celestes. Os núcleos da Terra, de Mercúrio e de duas luas de Júpiter, Ganimedes e Io, por exemplo, geram todos campos magnéticos detectáveis. E há vestígios de magnetismo antigo encontrados em Marte e na nossa Lua. Mas também há meteoritos - pequenas rochas espaciais que caíram para a Terra - que contêm indícios de magnetismo. 

Os cientistas afirmam que alguns meteoritos ferrosos contêm remanescentes de um campo magnético gerado internamente, o que não deveria ser possível. Embora se pense que os meteoritos de ferro representem os núcleos metálicos dos asteroides (pequenos corpos planetários), não se espera que estes núcleos tenham as características internas altamente específicas necessárias para gerar e registar simultaneamente magnetismo.

Num novo estudo, os cientistas Zhongtian Zhang e David Bercovici propõem que, sob certas condições, as colisões entre asteroides podem levar à formação de asteroides metálicos que podem gerar um campo magnético e registar o magnetismo através dos seus próprios materiais. Pequenos fragmentos destes asteroides, com vestígios de magnetismo, poderiam cair na Terra como meteoritos.

Este trabalho inspirou os cientistas a considerar a questão de saber se o fenômeno "pilha de escombros" - que são criadas quando as forças gravitacionais fazem com que os fragmentos das colisões de asteroides se voltem a formar em novas combinações - poderia ser relevante para a geração de um campo magnético. 

A modelagem dos pesquisadores sugere que, após a colisão de um asteroide, é possível que se formem novos asteroides com grande teor metálico, com um núcleo interno frio, rodeado por uma camada externa líquida mais quente. Quando o núcleo mais frio começa a retirar calor da camada exterior e elementos mais leves, como o enxofre, são liberados, a convecção tem início; que, por sua vez, cria um campo magnético. 

De acordo com o modelo, este tipo de dínamo poderia gerar um campo magnético durante vários milhões de anos, o que seria o tempo suficiente para que a sua presença fosse detectada em meteoritos ferrosos pelos cientistas, bilhões de anos mais tarde.

O estudo foi publicado no periódico Proceedings of the National Academy of Sciences

Fonte: Yale University

quinta-feira, 27 de julho de 2023

Nova imagem revela segredos sobre o nascimento de planetas

Uma nova imagem divulgada esta semana pelo Observatório Europeu do Sul (ESO) dá-nos pistas sobre como é que planetas com a massa de Júpiter se podem formar.

© ESO / ALMA (V960 Mon)

Com o auxílio do Very Large Telescope (VLT) do ESO e do Atacama Large Millimeter/submillimeter Array (ALMA), os pesquisadores detectaram enormes aglomerados de poeira próximo de uma estrela jovem, que poderão colapsar e formar planetas gigantes.

O trabalho baseia-se numa imagem obtida pelo instrumento SPHERE (Spectro-Polarimetric High-contrast Exoplanet REsearch) montado no VLT, que mostra com extremo detalhe o material que rodeia a estrela V960 Mon. Esta estrela jovem situa-se a mais de 5.000 anos-luz de distância da Terra na constelação do Unicórnio e chamou a atenção dos astrônomos em 2014 quando aumentou subitamente o seu brilho em mais de vinte vezes. As observações obtidas pouco depois do início desta “explosão” de brilho, revelaram que a matéria que orbita V960 Mon está coalescendo numa série de braços espirais intrincados que se estendem ao longo de distâncias maiores que todo o nosso Sistema Solar. 

Esta descoberta motivou os astrônomos a analisarem observações existentes em arquivo do mesmo sistema obtidas pelo ALMA. As observações VLT incidem sobre a superfície da matéria poeirenta em torno da estrela, enquanto o ALMA consegue observar a sua estrutura mais profundamente. Com o ALMA, tornou-se aparente que os braços espirais estão se fragmentando, resultando na formação de aglomerados com massas semelhantes às de planetas. 

Os astrônomos acreditam que os planetas gigantes se formam ou por “acreção no núcleo”, quando grãos de poeira se juntam, ou por “instabilidade gravitacional”, quando grandes fragmentos de material em torno de uma estrela se contraem e colapsam. Apesar dos pesquisadores já terem encontrado evidências anteriores para o primeiro destes cenários, as pistas que apoiam o segundo permanecem escassas. Até agora ainda ninguém tinha visto uma observação real de instabilidade gravitacional ocorrendo em escalas planetárias.

Os instrumentos do ESO ajudarão os astrônomos a revelar mais detalhes sobre este sistema planetário em formação e o Extremely Large Telescope (ELT) desempenhará um papel crucial. Atualmente em construção no deserto chileno do Atacama, o ELT será capaz de observar este sistema com um detalhe sem precedentes. O ELT permitirá explorar a complexidade química que circunda estes aglomerados, fornecendo informações sobre a composição do material a partir do qual estão formando potenciais planetas. 

Este trabalho foi descrito num artigo científico publicado na revista da especialidade The Astrophysical Journal Letters

Fonte: ESO

sábado, 18 de fevereiro de 2023

Quatro classes de sistemas planetários

Há muito que os astrônomos sabem que os sistemas planetários não estão necessariamente estruturados como o nosso Sistema Solar. Pesquisadores das Universidades de Berna e de Genebra, bem como do NCCR PlanetS, mostraram pela primeira vez que existem quatro tipos de sistemas planetários.

© NCCR PlanetS (ilustração de quatro classes de sistemas planetários)

No nosso Sistema Solar, tudo parece estar em ordem: os planetas rochosos menores, tais como Vênus, a Terra ou Marte, orbitam relativamente perto da nossa estrela, o Sol. Os grandes gigantes de gás e gelo, tais como Júpiter, Saturno, ou Netuno, por outro lado, movem-se em órbitas largas ao redor do Sol. 

Há mais de uma década, os astrônomos repararam, com base em observações com o então inovador telescópio Kepler, que os planetas em outros sistemas se assemelham normalmente aos seus respetivos vizinhos em tamanho e massa. Mas durante muito tempo não era claro se esta descoberta se devia a limitações dos métodos de observação.

Os astrônomos desenvolveram uma estrutura para determinar as diferenças e semelhanças entre os planetas dos mesmos sistemas. E foi descoberto que não existem duas, mas sim quatro arquiteturas de sistemas. Estas quatro classes são denominadas "semelhante", "ordenada", "antiordenada" e "mista. 

Os sistemas planetários em que as massas de planetas vizinhos são idênticas entre si têm uma arquitetura semelhante. Os sistemas planetários ordenados são aqueles em que a massa dos planetas tende a aumentar com a distância à estrela, tal como no nosso Sistema Solar. Se, por outro lado, a massa dos planetas diminui aproximadamente com a distância à estrela, a arquitetura é antiordenada do sistema. E ocorrem arquiteturas mistas, quando as massas planetárias de um sistema variam muito de planeta para planeta. Este quadro geral também pode ser aplicado a quaisquer outras medições, como o raio, densidade ou conteúdos de água. 

Os resultados também levantam questões: Que arquitetura é a mais comum? Que fatores controlam o aparecimento de um tipo de arquitetura? Quais os fatores que não desempenham um papel? 

Os resultados mostram que os sistemas planetários "semelhantes" são o tipo mais comum de arquitetura. Cerca de oito em cada dez sistemas planetários em torno de estrelas visíveis no céu noturno têm uma arquitetura "semelhante". Isto também explica porque é que foram encontradas evidências desta arquitetura nos primeiros meses da missão do Kepler. 

O que surpreendeu a equipe foi que a arquitetura "ordenada", a que também inclui o Sistema Solar, parece ser a classe mais rara. Há indícios de que tanto a massa do disco de gás e poeira do qual emergem os planetas, bem como a abundância de elementos pesados na respectiva estrela, desempenham um papel. Os sistemas planetários "semelhantes" emergem a partir de discos e estrelas razoavelmente pequenos e com poucos elementos pesados. Os discos grandes e massivos, com muitos mais elementos pesados na estrela, dão origem a sistemas mais ordenados e antiordenados. Os sistemas mistos surgem a partir de discos de tamanho médio. 

As interações dinâmicas entre planetas, tais como colisões ou ejeções, influenciam a arquitetura final. Um aspecto notável destes resultados é que liga as condições iniciais da formação planetária e estelar a uma propriedade mensurável: a arquitetura do sistema.

Dois estudos foram publicados no periódico Astronomy & Astrophysics

Fonte: National Centre of Competence in Research PlanetS

segunda-feira, 14 de novembro de 2022

Os detritos planetários mais antigos da Via Láctea

Astrônomos, liderados pela Universidade de Warwick, identificaram a estrela mais antiga na nossa Galáxia que está acretando detritos de planetesimais em órbita, um dos mais antigos sistemas planetários rochosos e gelados descobertos na Via Láctea.

© M. Garlick (antigas anãs brancas rodeadas por detritos planetários)

Os seus achados concluem que uma tênue anã branca localizada a 90 anos-luz da Terra, bem como os remanescentes do seu sistema planetário em órbita, têm mais de 10 bilhões de anos. 

O destino da maioria das estrelas, incluindo aquelas como o nosso Sol, é tornarem-se uma anã branca. Uma anã branca é uma estrela que queimou todo o seu combustível e liberou as suas camadas exteriores e está agora sofrendo um processo de encolhimento e arrefecimento. Durante este processo, quaisquer planetas em órbita serão perturbados e, em alguns casos, destruídos, restando os seus detritos que acretam para a superfície da anã branca. 

Para este estudo, os astrônomos modelaram duas anãs brancas incomuns que foram detectadas pelo observatório espacial Gaia da ESA. Ambas as estrelas estão poluídas por detritos planetários, tendo uma delas sido encontrada com um tom azul, enquanto a outra é a mais tênue e vermelha encontrada até à data na nossa vizinhança galáctica. 

Usando dados espectroscópicos e fotométricos do Gaia, do DES (Dark Energy Survey) e do instrumento X-Shooter no ESO para determinar há quanto tempo está arrefecendo, os astrônomos descobriram que a estrela "vermelha" WDJ2147-4035 tem cerca de 10,7 bilhões de anos, dos quais 10,2 bilhões foram passados arrefecendo como uma anã branca. A espectroscopia envolve a análise da luz estelar em diferentes comprimentos de onda, que pode detectar quando os elementos da atmosfera da estrela estão absorvendo luz com cores diferentes e ajuda a determinar quais são estes elementos e em que quantidade.

Ao analisar o espectro de WDJ2147-4035, a equipe encontrou a presença dos metais sódio, lítio, potássio e tentativamente carbono, fazendo desta a anã branca mais antiga, poluída por metais, descoberta até agora. A segunda estrela "azul", WDJ1922+0233, é apenas ligeiramente mais nova que WDJ2147-4035 e foi poluída por detritos planetários de composição semelhante à da crosta continental da Terra.

Os astrônomos concluíram que a cor azul de WDJ1922+0233, apesar da sua fria temperatura superficial, é provocada pela sua incomum atmosfera mista de hélio-hidrogênio. Os detritos encontrados na atmosfera de hélio quase puro e de alta gravidade da estrela vermelha WDJ2147-4035 são de um antigo sistema planetário que sobreviveu à evolução da estrela em anã branca, levando os astrônomos a concluir que este é o mais antigo sistema planetário em torno de uma anã branca descoberta na Via Láctea. 

Estas estrelas poluídas por metais mostram que a Terra não é única, existem por aí outros sistemas planetários com corpos semelhantes à Terra, onde 97% de todas as estrelas se tornarão anãs brancas e são tão omnipresentes no Universo que são muito importantes de compreender, especialmente estas extremamente frias. Formadas a partir das estrelas mais antigas, as anãs brancas frias fornecem informações sobre a formação e evolução dos sistemas planetários em torno das estrelas mais antigas da Via Láctea. Nota-se que estes planetas morreram muito antes mesmo da Terra ter sido formada. 

Os astrônomos também podem utilizar os espectros da estrela para determinar a rapidez com que estes metais afundam no núcleo da estrela, o que lhes permite olhar para trás no tempo e determinar a abundância de cada um destes metais no corpo planetário original. Ao comparar destas abundâncias com corpos astronômicos e material planetário encontrado no nosso próprio Sistema Solar, é possível adivinhar como teriam sido estes planetas antes da estrela morrer e se tornar uma anã branca, mas no caso de WDJ2147-4035, isto provou ser um desafio.

A estrela vermelha WDJ2147-4035 é um mistério, uma vez que os detritos planetários que acretou são muito ricos em lítio e potássio, ao contrário de qualquer objeto conhecido no nosso próprio Sistema Solar. Esta é uma anã branca muito interessante, uma vez que a sua temperatura superficial ultrafria, os metais que a poluem, a sua idade, e o fato de ser magnética, a tornam extremamente rara.

Quando estas estrelas velhas se formaram, há mais de 10 bilhões de anos, o Universo era menos rico em metais do que é agora, uma vez que os metais são formados em estrelas evoluídas e em explosões estelares gigantescas. As duas anãs brancas observadas proporcionam uma janela excitante para a formação planetária num ambiente pobre em metais e rico em gás que era diferente das condições quando o Sistema Solar foi formado.

Um artigo foi publicado no periódico Monthly Notices of the Royal Astronomical Society

Fonte: University of Warwick

sábado, 5 de novembro de 2022

Uma fórmula de antienvelhecimento para as estrelas

De acordo com um novo estudo de vários sistemas, utilizando o observatório de raios X Chandra da NASA, os planetas podem forçar as suas estrelas hospedeiras a agir mais jovens do que são.

© NASA (ilustração de planeta gigante gasoso orbitando sua estrela)

Esta pode ser a melhor evidência de que alguns planetas aparentemente atrasam o processo de envelhecimento das estrelas que orbitam. Embora a propriedade antienvelhecimento dos Júpiteres quentes (isto é, exoplanetas gigantes gasosos que orbitam uma estrela à distância de Mercúrio, ou até mais perto) já tenha sido vista anteriormente, este resultado é a primeira vez que é sistematicamente documentada, proporcionando o teste mais forte até agora deste fenômeno exótico.

Um Júpiter quente pode potencialmente influenciar a sua estrela hospedeira devido às forças das marés, fazendo com que a estrela gire mais rapidamente do que se não tivesse um planeta assim. Esta rotação mais rápida pode tornar a estrela hospedeira mais ativa e produzir mais raios X, sinais geralmente associados à juventude estelar. No entanto, há muitos fatores que podem determinar a vitalidade de uma estrela. Todas as estrelas abrandam a sua rotação e atividade e sofrem menos erupções à medida que envelhecem.

Dado que é um desafio determinar com precisão as idades da maioria das estrelas, tem sido difícil para os astrônomos identificar se uma estrela é incomumente ativa porque está sendo afetada por um planeta próximo, tornando-a mais jovem do que realmente é, ou porque é de fato jovem. 

O novo estudo abordou este problema através da observação de sistemas binários onde as estrelas estão amplamente separadas, mas apenas uma delas tem um Júpiter quente em órbita. Os astrônomos sabem que as estrelas em sistemas binários formam-se ao mesmo tempo. A separação entre as estrelas é demasiado grande para que se possam influenciar mutuamente ou para que o Júpiter quente possa afetar a outra estrela. Isto significa que podem usar a estrela sem planeta no binário como objeto de controle.

Ao comparar uma estrela, que hospeda um planeta próximo, com a sua gêmea, que não tem um planeta próximo, pode ser estudado as diferenças de comportamento de estrelas com a mesma idade. 

A equipe utilizou a quantidade de raios X para determinar quão "jovem" uma estrela está agindo. Pram procuradas evidências da influência planeta na estrela, estudando quase três dúzias de sistemas em raios X (a amostra final continha 10 sistemas observados pelo Chandra e seis pelo XMM-Newton da ESA, com vários observados por ambos).

Descobriram que as estrelas com Júpiteres quentes tendem a ser mais brilhantes em raios X e, portanto, mais ativas do que as suas estrelas companheiras sem Júpiteres quentes. Em casos anteriores houve algumas pistas muito intrigantes, mas agora nota-se finalmente evidências estatísticas de que alguns planetas estão influenciando as suas estrelas e a mantê-las jovens. 

O artigo que descreve estes resultados foi publicado no periódico Monthly Notices of the Royal Astronomical Society.

Fonte: Harvard-Smithsonian Center for Astrophysics

segunda-feira, 24 de maio de 2021

Planetas gasosos podem ser capazes de encolher?

Os astrônomos já identificaram milhares de planetas que orbitam estrelas distantes. No entanto, as análises dos perfis dos exoplanetas já descobertos revelam uma uma enorme escassez de astros de médio porte, com raios de 1,5 a 2 vezes maiores que o raio da Terra.

© NASA/G. Bacon (ilustração de um exoplaneta mini-Netuno)

Esta é a faixa que separa os planetas feitos de rocha de maior porte, conhecidos como super-Terras, e aqueles de menor volume entre os planetas feitos de gases, conhecidos como mini-Netunos. 

Esta lacuna nos raios e, consequentemente, na classificação dos exoplanetas foi identificada pela primeira vez em 2017. Desde então, os cientistas buscam entender o motivo por trás desse “salto” nos valores. 

Recentemente, uma equipe de pesquisadores liderada pelo Flatiron Institute encontrou uma nova pista ao analisar a possibilidade de que a lacuna esteja relacionada à idade dos planetas. O estudo utilizou dados coletados pelo telescópio Kepler, que monitora a quantidade de luz oriunda de estrelas distantes. 

Quando um exoplaneta se move entre a Terra e uma estrela, a luz desta diminui. Ao analisar a velocidade deste movimento, o tamanho da estrela e a extensão da redução da luminosidade, os astrônomos conseguem estimar o tamanho do exoplaneta. 

A dica para esta nova abordagem surgiu a partir de novas análises dos dados já disponíveis. Uma vez que estimar o tamanho de estrelas e exoplanetas pode ser algo bem complicado, foram selecionadas apenas informações de planetas cujos diâmetros eram conhecidos com segurança. Este processamento de dados revelou que a lacuna nos raios era até maior do que se pensava anteriormente. 

Em seguida, os cientistas dividiram os corpos celestes em dois grupos, com base no fato de serem mais jovens ou mais velhos do que 2 bilhões de anos (A Terra, para comparação, tem 4,5 bilhões de anos). Estes cálculos foram estimados pela determinação da idade das estrelas, pois estas e os planetas que as orbitam se formam simultaneamente e têm idades similares. 

Ao organizar os dados desta forma, a equipe descobriu que, entre planetas mais jovens, o tamanho de planeta mais raro é aquele com raio de cerca de 1,6 vezes o raio da Terra. Já entre os de idade mais avançada, os planetas mais incomuns têm dimensões de 1,8 vezes o raio da Terra. A implicação destas informações, conforme os pesquisadores propõem, é que alguns mini-Netunos encolhem drasticamente ao longo de bilhões de anos. 

O encolhimento acontece à medida que ocorrem vazamentos em suas atmosferas, deixando para trás apenas um núcleo sólido. Ao perderem gás, os mini-Netunos sofrem um “salto” na redução de tamanho e passam a ter raios correspondentes aos de super-Terras.

Os cientistas propõem dois mecanismos para explicar a perda de gás e, consequentemente, a existência da lacuna nos raios. O calor residual da formação planetária adiciona lentamente energia à atmosfera do planeta durante bilhões de anos. Isto faz com que o gás escape para o espaço ao longo destes bilhões de anos. Já a radiação intensa de estrelas próximas a um exoplaneta, num processo que chamamos de fotoevaporação, pode ocasionar a perda do gás num período que varia entre 100 milhões a bilhões de anos. 

“Provavelmente ambos os processos são importantes. Mas vamos precisar de modelos mais sofisticados para dizer quanto cada um deles contribui para o ciclo de vida do planeta,” disse Trevor David, líder do estudo e pesquisador do Centro de Astrofísica Computacional (CCA) do Flatiron Institute. “O ponto principal é que os planetas não são as esferas estáticas de rochas e gás“, constatou. 

O calor remanescente do interior dos planetas já é uma boa explicação. Porém, a radiação intensa das estrelas também pode contribuir, especialmente no início. Desta maneira, o próximo passo deve ser a criação de modelos aprimorados para entender como planetas evoluem e, assim, descobrir qual destas explicações desempenha um papel maior, considerando complexidades adicionais, como as interações entre atmosferas incipientes e campos magnéticos planetários ou oceanos de magma.

Os resultados foram publicados no periódico The Astronomical Journal.

Fonte: Scientific American

sábado, 12 de dezembro de 2020

Exoplaneta pode ser o Planeta Nove?

Esta é a primeira vez que os astrônomos foram capazes de medir o movimento de um enorme planeta semelhante a Júpiter que está orbitando muito longe de suas estrelas hospedeiras e do disco de detritos visíveis.


© NASA/ESA/M. Kornmesser (ilustração do exoplaneta HD 106906 b)

Este disco é semelhante ao nosso Cinturão de Kuiper de pequenos corpos gelados além de Netuno. Em nosso próprio Sistema Solar, o suspeito Planeta Nove também ficaria longe do Cinturão de Kuiper em uma órbita igualmente estranha. 

Embora a busca por um Planeta Nove continue, esta descoberta de exoplanetas é evidência de que tais órbitas estranhas são possíveis. O sistema onde reside este gigante gasoso tem apenas 15 milhões de anos. Isso sugere que o Planeta Nove, se é que existe, poderia ter se formado muito cedo na evolução de nosso Sistema Solar de 4,6 bilhões de anos. 

O exoplaneta com massa de 11 Júpiter chamado HD 106906 b foi descoberto em 2013 com os telescópios Magalhães no Observatório Las Campanas no deserto do Atacama, no Chile. No entanto, os astrônomos não sabiam nada sobre a órbita do planeta. Isto exigia algo que apenas o telescópio espacial Hubble poderia fazer: coletar medições muito precisas do movimento do astro ao longo de 14 anos com uma precisão extraordinária.

A equipe usou dados do arquivo do Hubble que forneceram evidências para este movimento. O exoplaneta reside extremamente longe de seu par de estrelas jovens e brilhantes, mais de 730 vezes a distância da Terra ao Sol, ou quase 110 bilhões de quilômetros. Esta ampla separação tornou um enorme desafio determinar a órbita de 15.000 anos em um período de tempo relativamente curto de observações do Hubble.

O planeta está se deslocando muito lentamente ao longo de sua órbita, devido à fraca atração gravitacional de suas estrelas gêmeas hospedeiras que estão muito distantes. 

O disco de detritos é muito incomum, talvez devido à atração gravitacional do planeta rebelde. Então, como o exoplaneta chegou a uma órbita tão distante e estranhamente inclinada? 

A teoria prevalecente é que se formou muito mais perto de suas estrelas, cerca de três vezes a distância que a Terra está do sol. Mas o arrasto dentro do disco de gás do sistema fez com que a órbita do planeta decaísse, forçando-o a migrar para dentro em direção ao seu par estelar. Os efeitos gravitacionais das estrelas gêmeas girando então o chutaram para uma órbita excêntrica que quase o lançou para fora do sistema e no vazio do espaço interestelar.

Então, uma estrela que passava de fora do sistema estabilizou a órbita do exoplaneta e o impediu de deixar seu sistema doméstico. Usando medições precisas de distância e movimento do satélite de pesquisa Gaia da Agência Espacial Europeia (ESA), as estrelas passantes candidatas foram identificadas em 2019 pelos membros da equipe do Observatório Europeu do Sul (ESO) no Chile, e Paul Kalas da Universidade da Califórnia. 

Em um estudo anterior, fora encontradas evidências circunstanciais para o comportamento do planeta em fuga: o disco de detritos do sistema é fortemente assimétrico. Um lado do disco é truncado em relação ao lado oposto e também é perturbado verticalmente, em vez de ficar restrito a um plano estreito visto no lado oposto das estrelas.

São as estrelas passageiras que perturbaram o planeta, e o planeta perturbou o disco? É o binário no meio que primeiro perturbou o planeta e depois perturbou o disco? Ou será que as estrelas ao passarem que perturbaram o planeta e o disco ao mesmo tempo? 

Este cenário da órbita bizarra de HD 106906 b é semelhante em alguns aspectos ao que pode ter feito com que o hipotético Planeta Nove terminasse nos confins do Sistema Solar, bem além da órbita dos outros planetas e além do Cinturão de Kuiper. O planeta Nove poderia ter se formado no Sistema Solar interno e sido expulso por interações com Júpiter. No entanto, Júpiter muito provavelmente teria lançado o Planeta Nove muito além de Plutão. 

Até o momento, os astrônomos têm apenas evidências circunstanciais do Planeta Nove. Eles encontraram um aglomerado de pequenos corpos celestes além de Netuno que se movem em órbitas incomuns em comparação com o resto do Sistema Solar. Esta configuração sugere que estes objetos foram guiados juntos pela atração gravitacional de um enorme planeta invisível.

Uma teoria alternativa é que não existe um planeta gigante perturbador, mas o desequilíbrio é devido à influência gravitacional combinada de vários objetos muito menores. Outra teoria é que o Planeta Nove não existe e o agrupamento de corpos menores pode ser apenas uma anomalia estatística.

O exoplaneta identificado captura material toda vez que se aproxima das estrelas hospedeiras? 

Com o futuro telescópio espacial James Webb isto poderia ser explicado através de dados no infravermelho. A sensibilidade única e recursos de imagem deste telescópio abrirão novas possibilidades para detectar e estudar estes planetas e sistemas não convencionais. 

A descoberta foi publicada no periódico The Astronomical Journal.

Fonte: Space Telescope Science Institute

quarta-feira, 25 de novembro de 2020

A próxima conjunção entre Júpiter e Saturno

Logo após o pôr do Sol, na noite de 21 de dezembro, Júpiter e Saturno aparecerão mais próximos no céu noturno da Terra do que desde a Idade Média, fornecendo às pessoas de todo o mundo um espetáculo celeste para celebrar o solstício de verão.

© Cartes du Ciel (conjunção de Júpiter e Saturno)

Os alinhamentos entre estes dois planetas são bastante raros, ocorrendo uma vez a cada mais ou menos 20 anos, mas esta conjunção é excepcionalmente rara devido à pequena distância que separa os astros. Teríamos que voltar até um pouco antes do amanhecer de 4 de março de 1226 para ver um alinhamento ainda mais íntimo entre estes objetos visíveis no céu noturno. O último encontro próximo dos astros ocorreu em 1623.

Os planetas Júpiter e Saturno têm vindo a aproximar-se um do outro a partir do ponto de vista do céu da Terra desde o inverno. De 16 a 25 de dezembro, os dois estarão separados por menos do que o diâmetro de uma Lua Cheia. 

Na noite da maior aproximação, 21 de dezembro, parecerão à vista desarmada um planeta duplo, separados por apenas 1/5 do diâmetro da Lua Cheia. Para a maioria dos observadores com telescópios, naquela noite cada planeta e várias das suas maiores luas estarão visíveis no mesmo campo de visão. 

Embora as melhores condições de observação sejam próximo do equador, o evento será observável em qualquer lugar da Terra, caso a meteorologia o permita. A dupla planetária aparecerá baixa no céu a oeste cerca de uma hora depois do pôr-do-Sol a cada noite.

Quanto mais para norte estiver o observador, menos tempo terá para ter um vislumbre da conjunção antes que os planetas se desloquem para trás do horizonte. Felizmente, os planetas serão brilhantes o suficiente para serem observados ao crepúsculo. 

A conjunção estará apenas 13º acima do horizonte aproximadamente uma hora depois do pôr-do-Sol (18h15). Será possível observá-los caso o tempo o permita e caso tenha uma vista desimpedida do horizonte a sudoeste.

Aqueles que preferirem esperar e ver Júpiter e Saturno tão próximos um do outro novamente, mas mais altos no céu, terão que aguardar até ao dia 15 de março de 2080. Depois desta data, o par só fará uma aparição idêntica algum tempo depois do ano 2400.

Fonte: Centro Ciência Viva do Algarve

sábado, 24 de outubro de 2020

ALMA mostra atividade vulcânica na atmosfera de Io

Novas imagens em comprimentos de onda no rádio obtidas pelo ALMA (Atacama Large Millimeter/submillimeter Array) mostram pela primeira vez o efeito direto da atividade vulcânica na atmosfera da lua de Júpiter, Io.

© NRAO/ALMA/Hubble (Júpiter e sua lua Io)

Composição que mostra a lua de Júpiter, Io, no rádio (ALMA), e no visível (Voyager 1 e Galileu). As imagens ALMA de Io mostram, pela primeira vez, plumas de dióxido de enxofre (a amarelo) saindo dos seus vulcões. Júpiter é visível no plano de fundo (Hubble).

Io é a lua mais vulcanicamente ativa do nosso Sistema Solar. Abriga mais de 400 vulcões ativos, expelindo gases de enxofre que dão a Io as suas cores amarelo-branco-laranja-vermelho quando congelam à sua superfície. 

Embora seja extremamente fina - cerca de bilhões de vezes mais fina do que a atmosfera da Terra - Io tem uma atmosfera que pode ensinar-nos mais sobre a atividade vulcânica de Io e fornecer-nos uma janela para o interior da exótica lua e para o que está acontecendo por baixo da sua crosta colorida. 

Pesquisas anteriores mostraram que a atmosfera de Io é dominada pelo gás dióxido de enxofre, proveniente da atividade vulcânica. "No entanto, não se sabe que processo impulsiona a dinâmica na atmosfera de Io," disse Imke de Pater da Universidade da Califórnia, Berkeley. "É atividade vulcânica, ou gás que sublima (transição do estado sólido para gasoso) da superfície gelada quando Io está sob a luz do Sol?" 

Para distinguir entre os diferentes processos que dão origem à atmosfera de Io, astrônomos usaram o ALMA para fazer instantâneos da lua quando entrava e saía da sombra de Júpiter (um eclipse de Io). 

"Quando Io passa pela sombra de Júpiter, e está fora da luz solar direta, é demasiado frio para o gás dióxido de enxofre, e condensa-se na superfície de Io. Durante esse tempo, podemos ver apenas o dióxido de enxofre de origem vulcânica. Portanto, podemos ver exatamente quanto da atmosfera é impactada pela atividade vulcânica," explicou Statia Luszcz-Cook da Universidade de Columbia, em Nova York. 

Graças à resolução e sensibilidade requintadas do ALMA, os astrônomos puderam, pela primeira vez, ver claramente as plumas de dióxido de enxofre (SO2) e monóxido de enxofre (SO) surgindo dos vulcões. Com base nos instantâneos, calcularam que os vulcões ativos produzem diretamente 30-50% da atmosfera de Io. 

As imagens ALMA também mostraram um terceiro gás saindo dos vulcões: cloreto de potássio (KCl). "Vemos KCl em regiões vulcânicas onde não vemos SO2 ou SO," disse Luszcz-Cook. "Esta é uma forte evidência de que os reservatórios de magma são diferentes em vulcões diferentes." 

Io é vulcanicamente ativo devido a um processo chamado aquecimento de maré. Io orbita Júpiter numa órbita que não é exatamente circular e, tal como a nossa Lua que está sempre com a mesma face virada para a Terra, o mesmo lado de Io está sempre voltado para Júpiter. A atração gravitacional das outras luas de Júpiter, Europa e Ganimedes, provoca uma quantidade tremenda de atrito interno e calor, dando origem a vulcões como Loki Patera, que se estende por mais de 200 km de diâmetro. "Ao estudar a atmosfera e a atividade vulcânica de Io, aprendemos mais não apenas sobre os próprios vulcões, mas também sobre o processo de aquecimento de maré e sobre o interior de Io," acrescentou Luszcz-Cook. 

Uma grande incógnita continua sendo a temperatura na atmosfera interior de Io. Em pesquisas futuras, os astrônomos esperam medi-la com o ALMA. "Para medir a temperatura da atmosfera de Io, precisamos de obter observações com mais alta resolução, o que requer que observemos a lua por um maior período de tempo. Só podemos fazer isso quando Io está sob a luz do Sol, pois não passa muito tempo em eclipse," disse de Pater. "Durante tal observação, Io irá girar dezenas de graus. Vamos precisar de aplicar um software que nos ajude a fazer imagens focadas. Já o fizemos anteriormente com imagens rádio de Júpiter obtidas com o ALMA e com o VLA (Very Large Array)".

Um artigo foi aceito para publicação no periódico The Planetary Science Journal.

Fonte: National Radio Astronomy Observatory

terça-feira, 15 de setembro de 2020

Descoberto possível marcador de vida em Vênus

Uma equipe internacional de astrônomos anunciou a descoberta de uma molécula rara, a fosfina nas nuvens do planeta Vênus.


© NASA/JPL-Caltech (Vênus)

Na Terra, este gás só é fabricado de forma industrial ou por micróbios que se desenvolvem em ambientes anaeróbicos, ou seja, sem oxigênio. Há décadas que os astrônomos suspeitam que as nuvens altas em Vênus poderiam oferecer um lar para micróbios, flutuando livres da superfície escaldante, mas precisando tolerar uma acidez muito alta.

A primeira a detecção de sinais de fosfina foram obtidas através do telescópio James Clerk Maxwell (JCMT), no Havaí. Para confirmar esta descoberta foram usadas 45 antenas do Atacama Large Millimeter/submillimeter Array (ALMA) no Chile, um telescópio muito mais sensível. Ambas as instalações observaram Vênus em um comprimento de onda de cerca de 1 milímetro, muito mais longo do que pode ser visto pelo olho humano, apenas telescópios colocados a grande altitude conseguem detectar estes comprimentos de onda com eficiência. 

Estima-se que existe fosfina, ou hidreto de fósforo, em pequenas concentrações nas nuvens de Vênus, apenas cerca de 20 moléculas em cada bilhão. Seguindo as observações foram feitos cálculos para determinar se estas quantidades poderiam ter origem em processos não biológicos naturais no planeta. Algumas ideias incluíam luz solar, minerais soprados da superfície para a atmosfera, vulcões ou relâmpagos, no entanto, concluiu-se que nenhum destes processos podia criar a quantidade de fosfina observada; estas fontes não biológicas podem criar, no máximo, dez milésimos da quantidade de fosfina observada pelos telescópios em Vênus. 

Segundo a equipe, para formar a quantidade de fosfina observada em Vênus, organismos terrestres teriam que trabalhar apenas a 10% de sua produtividade máxima. Sabe-se que bactérias terrestres criam fosfina retirando fosfato de minerais ou material biológico, acrescentando hidrogênio e, por fim, expelem fosfina. Qualquer organismo em Vênus provavelmente será muito diferente de seus primos terrestres, mas eles também podem ser a fonte de fosfina na atmosfera do planeta vizinho. 

A fosfina foi analisada como uma “bioassinatura” de gás de vida anaeróbica em planetas que orbitam outras estrelas, uma vez que a química normal não explica bem este fenômeno. A descoberta levanta muitas questões, tais como é que os organismos poderão sobreviver na atmosfera do planeta vizinho. Na Terra, alguns micróbios conseguem suportar até cerca de 5% de ácido no seu meio, mas as nuvens de Vênus são quase inteiramente feitas de ácido. 

Os pesquisadores acreditam que esta descoberta é bastante significativa, uma vez que já se pode descartar muitos outros processos alternativos de formação de fosfina, no entanto reconhece que para confirmar a presença de “vida” é ainda necessário muito trabalho. Apesar das temperaturas rondarem uns agradáveis 30 ºC nas altas nuvens de Vênus, o meio é extremamente ácido, com cerca de 90% de ácido sulfúrico, o que coloca sérias dificuldades a quaisquer micróbios que aí tentem sobreviver. 

A produção não biológica de fosfina em Vênus está excluída no que diz respeito ao nosso conhecimento atual da química da fosfina nas atmosferas de planetas rochosos. A confirmação de existência de vida na atmosfera de Vênus constituiria um enorme avanço em astrobiologia; portanto, é essencial acompanhar este intrigante resultado com estudos teóricos e observacionais para excluir a possibilidade de que a fosfina em planetas rochosos possa ter também uma origem química diferente da que ocorre na Terra.

Mais observações de Vênus e de outros planetas rochosos fora do nosso Sistema Solar poderão ajudar a reunir pistas de como a fosfina se forma nestes corpos e contribuir para a procura de sinais de vida fora da Terra.

Fonte: Nature Astronomy