Mostrando postagens com marcador Sol. Mostrar todas as postagens
Mostrando postagens com marcador Sol. Mostrar todas as postagens

sexta-feira, 18 de agosto de 2023

Encontrada uma anã marrom mais quente que o Sol

Esta estrela fracassada é irradiada por sua companheira, uma anã branca, e pode ser usada para estudar Júpiteres quentes.

© NASA (ilustração de uma anã marrom)

Um sistema binário a 1.400 anos-luz de distância está aumentando o calor e pode ajudar os especialistas a entender melhor a classe de exoplanetas conhecidos como Júpiteres ultraquentes, gigantes gasosos que estão muito próximos de suas massivas estrelas hospedeiras. 

O sistema único descrito em um novo estudo inclui uma anã marrom cuja temperatura atinge aproximadamente 7.700 °C. Isso o torna mais quente que o Sol, cuja superfície é de 5.500 °C. Mas, as temperaturas sufocantes da anã marrom não são geradas por nenhuma reação nuclear interna própria: em vez disso, ela orbita muito perto de sua companheira, uma anã branca chamada WD 0032-317, que a está explodindo com emissão de radiação. O lado noturno da anã marrom, ou seja, o lado voltado para longe da anã branca, é quase 6.000 °C mais frio. 

Este par de estrelas pode ajudar os cientistas a aprender mais sobre exoplanetas que orbitam muito perto de estrelas massivas e quentes. Os intensos surtos de radiação ultravioleta dessas estrelas podem fazer com que as atmosferas desses planetas evaporem e até vaporizem seu material planetário. Mas, esse processo é difícil de estudar. 

Um sistema anã branca e anã marrom pode servir como um análogo para um sistema de Júpiter ultraquente, que é muito mais fácil de observar. Análogos de Júpiter fornecem uma maneira indireta de estudar as atmosferas de planetas gigantes porque as anãs marrons devem ter atmosferas muito semelhantes às dos planetas gigantes gasosos.

O sistema WD 0032–317 foi observado pela primeira vez por astrônomos que realizaram um levantamento de centenas de anãs brancas no início dos anos 2000 com o Very Large Telescope (VLT) no Observatório Paranal, no Chile. 

Uma anã branca é uma estrela que atingiu a fase final de sua vida, depois de se expandir para uma gigante vermelha quando seu combustível acaba, ela explode suas camadas externas, tudo o que resta é o núcleo quente e inerte. 

O WD 0032–317 foi inicialmente sinalizado como um sistema binário de duas anãs brancas; mas, quando os astrônomos revisitaram os dados, eles viram sinais que eram mais reveladores de uma companheira anã marrom. 

As anãs marrons não são planetas nem estrelas, mas objetos intermediários: pelo menos 13 vezes mais massivas que Júpiter, mas não massivas o suficiente para gerar o calor e a pressão necessários para fundir o hidrogênio em hélio. Por esse motivo, às vezes são chamadas de estrelas fracassadas. 

A anã marrom também pode ser uma das maiores já encontradas, pesando de 75 a 88 vezes a massa de Júpiter. Em observações de acompanhamento, os pesquisadores viram uma emissão vindo do lado sempre voltado para a anã branca. Ele foi originalmente perdido há duas décadas porque as observações originais foram feitas quando o lado noturno da companheira estava voltado para o telescópio. Nos novos dados, o lado diurno da anã marrom está voltado para o telescópio. 

Os astrônomos conhecem apenas um outro exemplo deste fenômeno: KELT-9b, que é tão quente que espalha material por trás dele, imitando a cauda de um cometa. A dificuldade de encontrar Júpiteres ultraquentes se deve em parte ao brilho de suas grandes estrelas hospedeiras próximas. Para complicar ainda mais as coisas, essas estrelas giram rapidamente e são propensas a tempestades estelares. 

Os astrônomos geralmente medem a massa de um exoplaneta medindo o desvio para o vermelho e o desvio para o azul das linhas espectrais da estrela hospedeira conforme a estrela oscila devido à atração gravitacional do exoplaneta. Mas quando uma grande estrela está girando rapidamente e explodindo, o movimento rápido do material da estrela torna mais difícil para discernir a oscilação da estrela. 

Por essas razões, os astrônomos estão interessados em usar anãs marrons que orbitam anãs brancas como análogos de Júpiteres ultraquentes. Os tamanhos relativos desses objetos tornam a anã marrom mais fácil de observar: uma anã marrom tem aproximadamente o mesmo diâmetro de um Júpiter quente, mas as anãs brancas são muito menores do que a maioria das estrelas, aproximadamente do tamanho da Terra. No entanto, eles ainda podem liberar calor residual suficiente para queimar companheiros próximos: no caso de WD 0032–317, a quantidade de radiação ultravioleta extrema que a anã marrom recebe de sua anã branca é 5.600 vezes maior que a de KELT-9b. 

Além de ser um modelo para Júpiteres ultraquentes, o sistema WD 0032–317 também oferece aos cientistas uma visão da evolução das estrelas. Com base em modelos de evolução estelar, a anã marrom parece ter pelo menos alguns bilhões de anos. Mas a anã branca ainda é incrivelmente quente, indicando que faz apenas cerca de 1 milhão de anos desde que se tornou uma anã branca. Além do mais, a anã branca tem uma massa de cerca de 0,4 vezes a do Sol. 

De acordo com a teoria, uma anã branca tão pequena não pode existir por conta própria, levaria uma estrela de massa tão baixa por mais tempo do que a idade do Universo para atingir sua fase de anã branca. Suspeita-se que a anã marrom ajudou a colocar a anã branca no estado em que se encontra hoje porque, em certo momento, elas compartilharam um envelope comum. A evolução do envelope comum é uma fase na vida de uma estrela binária em que duas estrelas ou objetos orbitam dentro de um envelope compartilhado de gás. Nesse caso, o envelope comum se desenvolveu quando a estrela primária se expandiu para uma gigante vermelha, envolvendo a anã marrom. A anã marrom pode ter ajudado a estrela primária a perder parte de sua massa e se tornar uma anã branca antes do esperado para uma única estrela.

Fonte: Astronomy

sexta-feira, 14 de julho de 2023

Manchas solares em um Sol ativo

Por que nosso Sol está tão ativo agora?

© NASA / SDO (manchas solares)

Esperava-se um aumento na atividade da superfície porque nosso Sol está se aproximando do máximo solar em 2025. 

No entanto, no mês passado, nosso Sol gerou mais manchas solares do que em qualquer mês durante todo o ciclo solar anterior de 11 anos, e até mesmo datando de 2002. 

A imagem em destaque é uma composição de imagens tiradas todos os dias de janeiro a junho pelo Solar Dynamic Observatory (SDO) da NASA. Mostrando uma grande abundância de manchas solares, grandes manchas individuais podem ser rastreadas ao longo do disco solar, da esquerda para a direita, durante cerca de duas semanas. 

À medida que o ciclo solar continua, as manchas solares geralmente aparecem mais perto do equador. As manchas solares são apenas uma maneira de nosso Sol exibir atividade de superfície, outra são as erupções e ejeções de massa coronal (CMEs) que expelem partículas para o Sistema Solar. 

Estas partículas podem afetar os meios de comunicações e estações elétricas. Por outro lado, a atividade solar na atmosfera da Terra, pode apresentar um aspecto estético quando desencadeiam auroras. 

Fonte: NASA

quinta-feira, 22 de junho de 2023

A compreensão da física envolvendo superexplosões estelares

A relação entre as manchas solares e as explosões solares tem sido bastante investigada nos estudos sobre o Sol.

© NASA (estrela com grande cobertura de manchas e superflares)

Até porque essas erupções associadas a ejeções de massa coronal, em que grandes quantidades de energia são liberadas, impactam diretamente nosso planeta, causando maior ocorrência de auroras boreais; blecautes nas comunicações por rádio; incremento do efeito de cintilação nos sinais de GPS; redução nas velocidades e altitudes dos satélites artificiais. 

Para entender a física por trás desses eventos estelares, uma nova pesquisa enfocou um fenômeno ainda mais intenso, denominado superexplosão (superflare, em inglês), com energia de 1.000 a 10.000 vezes maior do que as maiores explosões vistas no Sol. E buscou esse tipo de evento em duas estrelas do tipo K: a Kepler-411 e a Kepler-210. 

Descobriu que, a despeito de essas estrelas serem semelhantes em todos os aspectos, desde as massas até os períodos de rotação e os sistemas planetários, e de ambas exibirem em torno de 100 manchas, a primeira produziu 65 supererupções, enquanto a segunda não produziu nenhuma. “A área das manchas estelares parece não ser a principal responsável pelo desencadeamento das superexplosões. Talvez a explicação deva ser buscada na complexidade magnética das regiões ativas”, diz Alexandre Araújo, pós-doutorando na Escola de Engenharia Mackenzie. Com apoio da FAPESP, o estudo foi conduzido por ele e sua ex-orientadora de doutorado, atual supervisora de pós-doutorado, Adriana Valio, pesquisadora do Centro de Radioastronomia e Astrofísica Mackenzie (CRAAM), da Universidade Presbiteriana Mackenzie.

As manchas de ambas as estrelas foram caracterizadas com a técnica de mapeamento por trânsito planetário, que fornece a intensidade, temperatura, posição (latitude e longitude) e raio. “Pelo conhecimento que se tinha da literatura, as estrelas com manchas maiores teriam mais chance de produzir superflares, mas não foi isso que observamos. As manchas estelares da Kepler-411 são muito menores do que as da Kepler-210. Teoricamente, seria esta que deveria ter superexplosões, mas isso não acontece. Nossa explicação para a inexistência de superflares na Kepler-210, mesmo com grandes manchas na sua superfície, está na complexidade magnética, na evolução e no tempo de vida das manchas”, afirma Araújo. 

Além de buscar um avanço no conhecimento das atividades estelares, o presente estudo teve uma motivação adicional. A partir da descoberta das primeiras superexplosões em estrelas de tipo solar, a comunidade científica passou a olhar com atenção para tais fenômenos, principalmente para investigar quais seriam as possibilidades de o Sol apresentar uma explosão dessa proporção. Se as erupções de muito menor intensidade já impactam tão fortemente nossa sociedade tecnológica, o que esperar de fenômenos energéticos de tal magnitude? “Certamente os planetas que orbitam estrelas com uma frequência de superflares podem chegar a perder sua atmosfera e, por isso, não desenvolver a vida, pelo menos a vida como a conhecemos”, responde Araújo. 

A estrutura das estrelas de tipo solar 

Para entender tudo isso, é preciso abrir um largo parêntese e recapitular alguns conhecimentos básicos sobre a estrutura das estrelas, obtidos principalmente a partir dos estudos sobre o Sol. Para efeito didático, essa estrutura é dividida em camadas. “O núcleo é a fonte principal da energia da estrela. No Sol, essa região é uma esfera cujo raio corresponde à quinta parte do raio solar, mas com densidade extremamente alta. Nele, a conversão de hidrogênio em hélio, por meio de reações termonucleares, produz temperatura da ordem de 13,6 milhões de kelvin (K)”, informa Valio. 

Em torno do núcleo, fica a zona radiativa, onde a energia é transportada pelos fótons em todas as direções. Os fótons, como se sabe, são as partículas associadas à radiação eletromagnética. E sua velocidade de propagação no vácuo é a maior do universo material. Porém, como a zona radiativa é composta por partículas (prótons, elétrons etc.), a absorção e posterior emissão por estes componentes obstruem enormemente o trânsito dos fótons. De modo que eles levam cerca de 1 milhão de anos para atravessar essa camada e chegar à seguinte, a zona convectiva. “Na zona convectiva, a energia é transportada por meio de correntes de convecção. O material mais quente sobe para a superfície da estrela, enquanto o material mais frio e denso afunda de volta para a camada convectiva. Esse movimento cria células gigantes, que transportam energia e material através da estrela. Na superfície do Sol, elas são conhecidas como os grânulos solares”, explica Valio.

A superfície do Sol é chamada de fotosfera. É nela que aparecem as manchas solares, os grânulos e as erupções, que se estendem por toda a atmosfera solar, composta pela cromosfera e pela coroa. A temperatura média da fotosfera é pouco maior do que 5.700 K, o que faz com que seja relativamente fria em comparação com as camadas internas do Sol ou com as camadas superiores da atmosfera solar. É da fotosfera que sai a maior parte da luz e do calor emitidos por essa estrela. 

“As manchas que aparecem na fotosfera são causadas por campos magnéticos intensos e podem durar de alguns dias a várias semanas antes de desaparecerem. Sua formação começa com um campo magnético gerado pelo movimento de partículas eletricamente carregadas na tacoclina, fina camada compreendida entre as regiões radiativa e convectiva do interior solar. Ao emergirem na superfície do Sol, os tubos de fluxo magnético criam regiões de campo intenso, que bloqueiam a transferência de calor do interior para a superfície. As manchas são escuras porque sua temperatura é 1.000 a 1.500 graus menor do que a temperatura do resto da superfície”, descreve Valio. 

As manchas geralmente têm formatos e tamanhos diferentes, sendo sua complexidade magnética um fator crucial para a produção das maiores explosões solares. Estas são observadas em todo o espectro eletromagnético: rádio, infravermelho, luz visível, ultravioleta, raios X e raios gama. Tais fenômenos transientes acontecem na atmosfera solar, nas regiões de altas concentrações de campo magnético, onde grandes quantidades de energia são liberadas por reconexão magnética. A potência gerada nas maiores explosões solares é de aproximadamente 1.017 a 1.022 quilowatts. 

O método de trânsitos planetários 

O grande desafio para os pesquisadores de superflares é desvendar os mecanismos que originam tais fenômenos. É consensual que essas grandes explosões estejam relacionadas com as manchas estelares. Mas de que forma? “O método de trânsitos planetários é excelente para investigar manchas na superfície de estrelas do tipo solar. Tal método é atualmente o mais robusto para esse tipo de pesquisa. Mas sua aplicação é bastante complicada, principalmente devido à dificuldade de obter estrelas que se encaixem nos critérios de investigação”, comenta Araújo. 

Ele e Valio trabalharam com dados do telescópio Kepler, procurando estrelas que se encaixassem no perfil do estudo. O telescópio espacial Kepler foi projetado pela NASA, a agência espacial norte-americana, com o objetivo de descobrir planetas de tipo terrestre fora do Sistema Solar. Nos quatro anos de sua primeira fase de operação, que se estendeu de 2009 a 2013, ele observou mais de 150 mil estrelas. E, para extrair informações sobre esses objetos, foi utilizado o método de trânsitos planetários, que se baseia na diminuta alteração produzida no brilho da estrela quando um planeta passa na sua frente. Mas encontrar, nessa gigantesca base de dados, os objetos que se adequassem aos seus propósitos foi igual a procurar uma agulha no palheiro. 

“Em primeiro lugar, a estrela devia ter um ou mais planetas. Para que esses exoplanetas pudessem ser detectados, seu ângulo de inclinação em relação à estrela tinha que estar no ângulo de visada do telescópio. Além disso, a estrela precisava apresentar manchas na sua superfície. E o exoplaneta devia transitar nas regiões das manchas. O período orbital do exoplaneta tinha que ser de poucos dias. E seu raio devia ser bem maior do que o da Terra, para que a queda de brilho causada nas curvas de luz da estrela fosse bastante significativa. Finalmente, a estrela precisava apresentar superflares”, disse Araújo. 

O pesquisador afirma que, felizmente, foi possível identificar uma estrela, a Kepler-411, com excelente qualidade de observação. E o melhor: ela possuía um sistema planetário com quatro exoplanetas. Mas, para entender o papel das manchas estelares, era preciso encontrar uma segunda estrela em tudo semelhante, exceto por um aspecto: ela não podia apresentar superflares. “Foi, de certa forma, uma ousadia nossa acreditar que essa segunda estrela existia. E nos sentimos recompensados quando encontramos a Kepler-210, com os parâmetros estelares muito próximos da Kepler-411”, diz Araújo. 

Acredita-se que a detecção de supererupções esteja diretamente ligada à cobertura temporal das manchas na superfície das estrelas. E que, quanto maior a área das manchas estelares, maior o armazenamento de energia magnética para produzir a explosão. “Nossos resultados trouxeram uma perspectiva um pouco diferente. Como já foi dito, na Kepler-411, detectamos 65 superflares, com energias de até 1.035 ergs [1.035 ×107 quilojoules]. Enquanto a Kepler-210 não apresentou nenhuma supererupção, mesmo com o dobro de cobertura temporal, o que nos deu maior probabilidade de observação. E o que mais nos surpreendeu foi o fato de os raios das manchas estelares da Kepler-411 serem muito menores do que os da Kepler-210”, enfatiza Araújo. 

A explicação pode estar no fato de que, embora sejam maiores em área, as manchas da Kepler-210 apresentam uma configuração magnética mais simples. “No Sol, as manchas são classificadas de acordo com o comportamento do campo magnético na área. E classificadas como alfa (α), beta (β), gama (γ) e delta (δ), ou por meio de uma combinação dessas configurações. As manchas deltas são as que apresentam intensa atividade de flares solares. Acreditamos que as manchas da Kepler-210 apresentem uma configuração magnética mais simples, do tipo alfa ou beta. Infelizmente, a confirmação exata dessa hipótese só seria possível por meio de magnetogramas, que são imagens capazes de detectar a localização e a intensidade dos campos magnéticos. Atualmente, só conseguimos observar isso no Sol. Ainda não temos tecnologia para obter magnetogramas de estrelas distantes. De qualquer forma, nosso estudo já nos permite dizer que, em vez de fechar o foco na área das manchas estelares, talvez seja mais produtivo considerar a complexidade magnética das regiões ativas”, conclui Valio. 

Um artigo foi publicado no periódico Monthly Notices of the Royal Astronomical Society Letters

Fonte: Agência FAPESP

sexta-feira, 27 de maio de 2022

O Sol pode contribuir para as tempestades de poeira de Marte

Uma equipe de pesquisadores relatou que um desequilíbrio sazonal na quantidade de energia solar absorvida e liberada pelo planeta Marte é uma causa provável das tempestades de poeira que há muito intrigam os observadores.

© NASA/JPL (tempestade em Marte)

À esquerda, Marte em condições limpas; à direita, Marte envolvido por uma tempestade de poeira sazonal.

O desequilíbrio extremo de Marte referente ao balanço energético foi documentado pelos pesquisadores da Universidade de Houston. Uma das descobertas mais interessantes é que o excesso de energia, ou seja, mais energia sendo absorvida do que emitida, poderia ser um dos mecanismos geradores das tempestades de poeira de Marte. Compreender como isto funciona em Marte pode fornecer pistas sobre a função do balanço energético da Terra no desenvolvimento de tempestades severas. 

Uma fina atmosfera e uma órbita muito elíptica tornam Marte especialmente susceptível a grandes diferenças de temperatura. Absorve quantidades extremas de calor solar quando está mais perto do Sol nas suas estações perielionares (primavera e verão para o hemisfério sul de Marte), que é a mesma parte extrema da órbita em que aparecem as suas tempestades de poeira. À medida que a sua órbita afasta Marte do Sol, é absorvida menos energia solar pelo planeta. 

Na Terra, os desequilíbrios energéticos podem ser medidos de acordo com a estação e o ano e desempenham um papel crítico no aquecimento global e nas alterações climáticas. 

Marte não é um planeta que tenha qualquer tipo de mecanismos reais de armazenamento de energia, como ocorre aqui na Terra. Os grandes oceanos, por exemplo, ajudam a equilibrar o sistema climático. Ainda assim, Marte contém sinais de que oceanos, lagos e rios foram outrora abundantes. Então, o que aconteceu? 

Os fatos são incertos quanto aos motivos ou quando o planeta se tornou neste globo quente e poeirento com uma abundância de óxido de ferro, cuja cor sépia inspirou observadores de há séculos atrás a chamar-lhe o Planeta Vermelho. Marte já teve, no passado, oceanos e lagos, mas mais tarde sofreu aquecimento global e alterações climáticas. De alguma forma, Marte perdeu os seus oceanos e lagos. Sabemos que estão a acontecer alterações climáticas agora na Terra. 

Para os entusiastas planetários, muitos dos dados podem ser acessados gratuitamente a partir do website PDS (Planetary Data Systems) da NASA, embora alguma informação esteja disponível apenas para os pesquisadores. Colaboraram também com cientistas da NASA, a Mars Global Surveyor e duas missões, Curiosity e InSight, que ainda estão operando no solo marciano.

Um artigo foi publicado no periódico Proceedings of the National Academy of Sciences

Fonte: University of Houston

domingo, 22 de maio de 2022

Uma nova visão do Sol

A sonda Solar Orbiter na sua primeira passagem próxima pelo Sol mostra proeminências poderosas fornecendo extraordinárias informações sobre o comportamento magnético do Sol e a forma como este molda o clima espacial.

© ESA/Solar Orbiter (erupção solar de uma região ativa)

A passagem mais próxima da Solar Orbiter pelo Sol, conhecida como periélio, teve lugar no dia 26 de março. A sonda estava dentro da órbita de Mercúrio, a cerca de um-terço da distância Sol-Terra, e o seu escudo térmico atingia 500 °C. Mas dissipou esse calor com a sua tecnologia inovadora para manter a nave segura e funcional. A sonda também absorveu várias erupções solares e até uma ejeção de massa coronal dirigida à Terra, proporcionando uma previsão meteorológica espacial em tempo real. 

O principal objetivo científico da Solar Orbiter é explorar a ligação entre o Sol e a heliosfera. A heliosfera é a grande "bolha" espacial que se estende além dos planetas do nosso Sistema Solar. Está cheia de partículas eletricamente carregadas, a maioria das quais foram expelidas pelo Sol para formar o vento solar. É o movimento destas partículas e os campos magnéticos associados que criam o clima espacial. 

Os instrumentos EUI (Extreme Ultraviolet Imager) e STIX (X-ray Spectrometer/Telescope) a bordo da nave espacial Solar Orbiter captaram uma erupção solar de uma região ativa na face do Sol em 2 de março de 2022. As imagens EUI mostram luz ultravioleta extrema com um comprimento de onda de 17 nanômetros sendo emitida por gases solares atmosféricos com uma temperatura de cerca de um milhão de graus Celsius. O EUI obtém tanto imagens de disco completo utilizando o telescópio FSI (Full Sun Imager), como imagens detalhadas de uma região menor utilizando o telescópio HRIEUV (High Resolution Imager). As detecções STIX foram sobrepostas nas imagens ampliadas do EUI HRIEUV. O STIX regista os raios X em duas bandas de energia diferentes. Os raios X menos energéticos são exibidos em vermelho, os raios X mais energéticos são exibidos em azul. A erupção emite principalmente luz ultravioleta extrema e raios X menos energéticos, mas à medida que se desenvolve, também gera alguns raios X mais energéticos.

O periélio foi um enorme sucesso e gerou uma vasta quantidade de dados extraordinários. A sonda já está navegando pelo espaço para se alinhar para a sua passagem seguinte pelo periélio, ligeiramente mais próxima do Sol, em 13 de outubro, a 0,29 vezes a distância entre o Sol e a Terra. Antes, em 4 de setembro, fará a sua terceira passagem por Vênus. 

A Solar Orbiter já tirou as suas primeiras fotografias das regiões polares largamente inexploradas do Sol, mas muito mais está ainda por vir. No dia 18 de fevereiro de 2025, a Solar Orbiter encontrará Vênus pela quarta vez. Isto resultará no aumento da inclinação da órbita da sonda para cerca de 17 graus. O quinto voo por Vênus, em 24 de dezembro de 2026, aumentará ainda mais esta inclinação para 24 graus e marcará o início da missão de "alta latitude". 

Nesta fase, a Solar Orbiter vai ver as regiões polares do Sol mais diretamente do que nunca. Tais observações em linha de visão são a chave para desenredar o complexo ambiente magnético nos polos, que por sua vez podem guardar o segredo do ciclo de 11 anos de atividade solar. 

Fonte: ESA

quarta-feira, 15 de dezembro de 2021

Uma estrela jovem parecida com o Sol

Espiando um sistema estelar localizado a dúzias de anos-luz da Terra, os astrônomos observaram, pela primeira vez, uma estrela chamada EK Draconis que ejetou uma quantidade gigantesca de energia e partículas carregadas num evento muito mais poderoso do que qualquer evento do gênero já visto no nosso próprio Sistema Solar.

© NAOJ (ilustração da estrela EK Draconis ejetando massa coronal)

O estudo explora um fenômeno estelar denominado "ejeção de massa coronal", também conhecido como tempestade solar. O nosso Sol emite este tipo de erupções regularmente. São compostas por nuvens de partículas extremamente quentes, ou plasma, que podem viajar pelo espaço a velocidades de milhões de quilômetros por hora. As ejeções de massa coronal podem ter um sério impacto na Terra e na sociedade humana, se uma ejeção de massa coronal atingir a Terra, pode danificar satélites em órbita e afetar as redes de energia que servem cidades inteiras.

O novo estudo, liderado por Kosuke Nakemata do NAOJ (National Astronomical Observatory of Japan) também sugere que as explosões podem ficar muito piores. Os pesquisadores usaram telescópios no solo e no espaço para espiar EK Draconis, que parece uma versão jovem do Sol. Em abril de 2020, a equipe observou EK Draconis ejetando uma nuvem de plasma escaldante com uma massa de um quatrilhão de quilogramas, mais de 10 vezes maior do que a ejeção de massa coronal mais poderosa já registada numa estrela parecida com o Sol. O evento pode servir como um aviso de quão perigoso pode ser o clima espacial.

As ejeções de massa coronal geralmente ocorrem logo depois que uma estrela libera uma proeminência, ou uma explosão repentina e brilhante de radiação que pode estender-se para o espaço. No entanto, pesquisas recentes sugeriram que, no Sol, esta sequência de eventos pode ser relativamente tranquila. Em 2019, por exemplo, um estudo mostrou que jovens estrelas semelhantes ao Sol, na Galáxia, parecem ter superproeminências frequentes, como as nossas próprias proeminências solares, mas dezenas ou até centenas de vezes mais poderosas. Tal superproeminência também pode ocorrer no Sol, mas não com muita frequência, talvez uma vez a cada vários milhares de anos. Ainda assim, uma superproeminência também poderia levar a uma superejeção de massa coronal?

Para descobrir, os pesquisadores voltaram-se para EK Draconis. A curiosa estrela tem quase o mesmo tamanho que o nosso Sol mas, com apenas 100 milhões de anos, é relativamente jovem no sentido cósmico. O nosso Sol era assim há 4,5 mil milhões de anos. Os pesquisadores observaram a estrela durante 32 noites no inverno e na primavera de 2020 usando o TESS (Transiting Exoplanet Survey Satellite) da NASA e o telescópio SEIMEI da Universidade de Kyoto. E, no dia 5 de abril, os pesquisadores observaram em EK Draconis a liberação de uma superproeminência realmente grande. Cerca de 30 minutos depois, a foi observado o que parecia ser uma ejeção de massa coronal voando para longe da superfície da estrela. Foi captada apenas a primeira etapa deste fenómeno, chamada fase de "erupção do filamento". Mas, mesmo assim, era um monstro, movendo-se a uma velocidade máxima de 1,6 milhões de quilômetros por hora.

O Sol também pode ser capaz de tais eventos extremos. Mas, tal como as superproeminências, as superejeções de massa coronal são provavelmente raras para estrelas com a idade do nosso Sol. Ainda assim, as grandes ejeções de massa podem ter sido muito mais comuns nos primeiros anos do Sistema Solar. As ejeções gigantescas de massa coronal podem ter ajudado a moldar planetas como a Terra e Marte.

Os resultados foram publicados na revista Nature Astronomy.

Fonte: National Astronomical Observatory of Japan

quarta-feira, 1 de dezembro de 2021

Um eclipse lunar com bandas azuis

O que faz com que uma faixa azul cruze a Lua durante um eclipse lunar? A faixa azul é real, mas geralmente muito difícil de ver.

© Angel Yu (eclipse lunar)

A imagem HDR apresentada do eclipse lunar da semana passada, tirada de Yancheng, China, foi processada digitalmente para igualar o brilho da Lua e evidenciar as cores. A cor cinza do canto inferior direito é a cor natural da Lua, iluminada diretamente pela luz solar. A parte superior esquerda da Lua não é iluminada diretamente pelo Sol, pois está sendo eclipsada, ela fica na sombra da Terra.

Ela é fracamente iluminada, porém, pela luz do Sol que passou pelas profundezas da atmosfera terrestre. Esta parte da Lua é vermelha como o pôr do Sol da Terra são vermelhos: porque a atmosfera espalha mais luz azul do que vermelha. A incomum faixa azul é diferente, sua cor é criada pela luz do Sol que passou alto na atmosfera da Terra, onde a luz vermelha é melhor absorvida pelo ozônio do que a luz azul. 

Um eclipse total do Sol ocorrerá dia 4 de dezembro de 2021 (próximo sábado), mas, infelizmente, a totalidade será visível apenas perto do Polo Sul da Terra. Parte do eclipse surgirá a partir de 2h29min (BRT), enquanto o total se formará às 4h33min. O fenômeno será visto pela última vez às 6h37min. A totalidade do eclipse irá durar apenas 1 minuto e 54 segundos. 

Ele não poderá ser observado, no entanto, na maior parte do planeta. O principal ponto de aparição do eclipse será na Antártica. A região do mar de Weddell, parte do Oceano Antártico, terá a visualização mais privilegiada do raro fenômeno. Não será possível ver o fenômeno no Brasil. O último eclipse solar total visto pelos brasileiros aconteceu há 27 anos; o próximo, apenas em 2046. 

Um eclipse solar sempre acontece em média duas semanas antes ou depois de um eclipse lunar. Geralmente, são dois eclipses juntos, mas já foram registrados três em uma mesma temporada. O eclipse lunar parcial mais longo do século ocorreu no último dia 19 e foi visto em grande parte do planeta. Segundo a Nasa, quase 97,4% da Lua foi escondida durante o fenômeno, por isso não foi chamado de eclipse lunar total. Ele teve mais de três horas de duração; outro do mesmo tipo não será visto por outros 648 anos. A longa duração estava relacionada à órbita da Lua, que estava perto do seu ponto mais distante da Terra, o apogeu.

Fonte: NASA

segunda-feira, 9 de agosto de 2021

Modelo descreve estrela próxima que se assemelha ao Sol

Uma nova pesquisa liderada pela NASA fornece uma visão mais detalhada de uma estrela próxima que se parece com o nosso Sol na juventude.

© NASA (ilustração do aspecto do Sol há 4 bilhões de anos)

O trabalho permite que os cientistas entendam melhor como o nosso Sol pode ter sido quando era jovem e como pode ter moldado a atmosfera do nosso planeta e o desenvolvimento da vida na Terra. 

Com 4,65 bilhões de anos, o nosso Sol é uma estrela de meia-idade, localizada na Via Láctea, onde existem mais de 100 bilhões de estrelas. Uma em cada dez compartilha características com o nosso Sol, e muitas estão nos estágios iniciais de desenvolvimento.

A estrela Kappa 1 Ceti é uma tal análoga solar. A estrela está localizada a cerca de 30 anos-luz de distância e tem uma idade estimada em 600 a 750 milhões de anos, mais ou menos a mesma idade que o nosso Sol tinha quando a vida se desenvolveu na Terra, e também tem massa e temperatura superficial semelhantes ao nosso Sol. Todos estes fatores fazem de Kappa 1 Ceti uma "gêmea" do jovem Sol na época em que a vida surgiu na Terra e um importante alvo de estudo.

Um modelo solar existente foi adaptado para prever algumas das características mais importantes, embora difíceis de medir, de Kappa 1 Ceti. O modelo baseia-se na entrada de dados de uma variedade de missões espaciais, incluindo o telescópio espacial Hubble, o TESS (Transiting Exoplanet Survey Satellite) e o NICER da NASA e o XMM-Newton da ESA.

Nas estrelasliberam energia na forma de um vento estelar. Os ventos estelares, como as próprias estrelas, são compostos principalmente de um gás superaquecido conhecido como plasma, criado quando as partículas de um gás se dividem em íons carregados positivamente e elétrons carregados negativamente. O plasma mais energético, com a ajuda do campo magnético de uma estrela, pode disparar da parte mais externa e mais quente da atmosfera de uma estrela, a coroa, numa erupção, ou fluir de forma mais constante em direção aos planetas próximos como vento estelar.

Estrelas mais jovens tendem a gerar ventos estelares mais quentes e vigorosos e erupções de plasma mais poderosas do que as estrelas mais velhas. Estas explosões podem afetar a atmosfera e a química dos planetas próximos e, possivelmente, até catalisar o desenvolvimento de matéria orgânica nestes planetas. O vento estelar pode ter um impacto significativo nos planetas em qualquer fase da vida. Mas os ventos estelares fortes e altamente densos das estrelas jovens podem comprimir os escudos magnéticos de proteção dos planetas circundantes, tornando-os ainda mais susceptíveis aos efeitos das partículas carregadas.

Em comparação com agora, na sua infância, o nosso Sol provavelmente girava três vezes mais depressa, tinha um campo magnético mais forte e emitia partículas altamente energéticas e radiação mais intensa. Hoje em dia, o impacto destas partículas às vezes é visível perto dos polos do planeta como auroras, as boreais ou as austrais. 

Este alto nível de atividade no nosso jovem Sol pode ter empurrado para trás a magnetosfera protetora da Terra, e fornecido ao planeta, não perto o suficiente para ficar tostado como Vênus, nem distante o suficiente para ser negligenciado como Marte, a química atmosférica ideal para a formação de moléculas biológicas. Processos semelhantes podem estar em desenvolvimento em outros sistemas estelares por toda a nossa Galáxia e no Universo.

Embora os análogos solares possam ajudar a resolver um dos desafios de espreitar o passado do Sol, o tempo não é o único fator que complica o estudo do nosso jovem Sol. Também existe a distância. Temos instrumentos capazes de medir com precisão o vento solar. No entanto, ainda não é possível observar diretamente o vento estelar de outras estrelas na nossa Galáxia, como Kappa 1 Ceti, porque estão demasiado distantes. 

A equipe também está trabalhando em outro projeto, examinando mais de perto as partículas que podem ter surgido das primeiras erupções solares, bem como a química prebiótica na Terra. Os pesquisadores esperam mapear os ambientes de outras estrelas semelhantes ao Sol em vários estágios de vida. Especificamente, têm olhos postos na jovem estrela EK Dra, localizada a 111 anos-luz de distância e com apenas 100 milhões de anos, que provavelmente gira três vezes mais depressa e lança mais proeminências e plasma do que Kappa 1 Ceti. A documentação de como estas estrelas semelhantes de várias idades diferem umas das outras ajudará a caracterizar a trajetória típica da vida de uma estrela.

O estudo foi publicado no periódico The Astrophysical Journal.

Fonte: NASA

quarta-feira, 30 de junho de 2021

Encontrando a Terra retroiluminada pelo Sol

Cientistas da Universidade de Cornell e do Museu Americano de História Natural identificaram 2.034 sistemas estelares próximos, até uma pequena distância cósmica de 326 anos-luz, que poderiam encontrar a Terra meramente observando o nosso pálido ponto azul cruzando o Sol.

© OpenSpace (ilustração da Terra e do Sol vistos de um exoplaneta)

São 1.715 sistemas estelares que podem ter avistado a Terra desde que a civilização humana floresceu há cerca de 5.000 anos, e mais 319 sistemas estelares que serão acrescentados nos próximos 5.000 anos.

Os exoplanetas em torno destas estrelas próximas têm lugar cósmico de destaque para ver se a Terra contém vida. Foram usadas as posições e os movimentos do catálogo Gaia EDR3 da ESA para determinar quais as estrelas que entram e saem da Zona de Trânsito da Terra, e por quanto tempo. A nossa vizinhança solar é um lugar dinâmico onde as estrelas saem e entram deste ponto de vista perfeito para ver a Terra transitar o Sol a um ritmo rápido. 

Dos 2.034 sistemas estelares que passam pela Zona de Trânsito da Terra ao longo do período examinado de 10.000 anos, 117 objetos estão a cerca de 100 anos-luz do Sol e 75 destes estão na Zona de Trânsito da Terra desde que as estações comerciais de rádio na Terra começaram a transmitir para o espaço há cerca de um século. As ondas de rádio transmitidas da Terra são uma assinatura da nossa civilização tecnologicamente avançada e os exoplanetas dentro desse alcance podem tê-las captado.

Incluídos no catálogo de 2.034 sistemas estelares estão sete conhecidos por hospedar exoplanetas. Cada um destes mundos teve ou terá a oportunidade de detectar a Terra, assim como os cientistas da Terra já encontraram milhares de mundos em órbita de outras estrelas usando o método de trânsito. 

Ao observar o trânsito de exoplanetas distantes, ou seja, a passagem em frente da sua estrela, os astrônomos podem interpretar as atmosferas iluminadas por esta estrela. Caso os exoplanetas possuam vida inteligente, podem observar a Terra iluminada pelo Sol e ver as assinaturas químicas da vida na nossa atmosfera. 

O sistema Ross 128, com uma estrela anã vermelha localizada na direção da constelação de Virgem, fica a cerca de 11 anos-luz e é o segundo sistema mais próximo com um exoplaneta do tamanho da Terra (cerca de 1,8 vezes o tamanho do nosso planeta). Qualquer habitante deste exoplaneta poderia ter visto a Terra cruzando em frente do nosso próprio Sol durante 2.158 anos, começando há cerca de 3.057 anos; perderam o seu ponto de vista há cerca de 900 anos.

O sistema TRAPPIST-1, a 45 anos-luz da Terra, hospeda sete planetas do tamanho da Terra em trânsito, quatro deles na zona habitável temperada daquela estrela. Embora tenhamos descoberto estes exoplanetas em torno de TRAPPIST-1, eles não serão capazes de nos localizar até que o seu movimento os leve para a Zona de Trânsito da Terra daqui a 1.642 anos. Potenciais observadores no sistema TRAPPIST-1 permanecerão no lugar cósmico de destaque durante 2.371 anos. 

Esta análise mostra que mesmo as estrelas mais próximas geralmente passam mais de 1.000 anos num ponto de vista onde podem ver um trânsito da Terra pelo Sol. Se for assumido que o inverso é verdadeiro, isto fornece uma saudável linha temporal para que civilizações identifiquem a Terra como um planeta interessante. 

O telescópio espacial James Webb vai observar vários exoplanetas em trânsito para caracterizar as suas atmosferas e, finalmente, procurar por sinais de vida. A iniciativa Breakthrough Starshot é um projeto ambicioso em andamento que visa lançar uma nanosonda em direção ao exoplaneta mais próximo detectado em torno de Proxima Centauri, a cerca de 4,2 anos-luz de distância, e caracterizar completamente este mundo.

A pesquisa foi publicada na revista Nature.

Fonte: Cornell University

terça-feira, 23 de fevereiro de 2021

Um mapa sem precedentes do campo magnético do Sol

Durante décadas após a sua descoberta, os observadores só podiam ver a cromosfera solar por alguns momentos fugazes: durante um eclipse solar total, quando um brilho vermelho rodeava a silhueta da Lua.


© Luc Viatour (cromosfera durante um eclipse solar)

Mais de cem anos depois, a cromosfera continua a ser a mais misteriosa das camadas atmosféricas do Sol. Situada entre a brilhante superfície e a etérea coroa solar, a atmosfera externa do Sol, a cromosfera é um lugar de mudanças rápidas, onde a temperatura aumenta e os campos magnéticos começam a dominar o comportamento do Sol.

Agora, pela primeira vez, três missões da NASA perscrutaram a atmosfera para enviar medições a várias altitudes do seu campo magnético. As observações, captadas por dois satélites e pela missão CLASP2 (Chromospheric Layer Spectropolarimeter 2), a bordo de um pequeno foguete suborbital, ajudam a revelar como os campos magnéticos à superfície do Sol dão origem às erupções brilhantes na sua atmosfera externa.

Um objetivo principal da heliofísica, a ciência da influência do Sol no espaço, incluindo as atmosferas planetárias, é prever o clima espacial, que geralmente começa no Sol, mas pode espalhar-se rapidamente pelo espaço e causar distúrbios perto da Terra.

O que impulsiona estas erupções solares é o campo magnético do Sol, as linhas invisíveis de força que se estendem da superfície solar ao espaço bem para lá da Terra. Este campo magnético é difícil de ver, só pode ser observado indiretamente, pela luz do plasma, ou gás superaquecido, que traça as suas linhas como faróis de carros que viajam numa estrada distante. No entanto, a forma como estas linhas magnéticas se organizam, sejam frouxas e retas ou firmes e emaranhadas, faz toda a diferença entre um Sol silencioso e uma erupção solar. 

Idealmente, os pesquisadores poderiam ler as linhas do campo magnético na coroa, onde ocorrem as erupções solares, mas o plasma é muito esparso para leituras precisas (a coroa é mais de um bilhão de vezes menos densa do que o ar ao nível do mar). Ao invés, os cientistas medem a fotosfera mais densamente compactada, a superfície visível do Sol, duas camadas abaixo. Usam então modelos matemáticos para propagar este campo para cima até à coroa. 

Esta abordagem ignora a medição da cromosfera, que fica entre as duas, na esperança de simular o seu comportamento. Infelizmente, na cromosfera as linhas do campo magnético reorganizam-se de maneiras difíceis de prever. 

Instituições nos EUA, Japão, Espanha e França trabalharam juntas para desenvolver uma nova abordagem para medir o campo magnético da cromosfera, apesar da sua natureza desorganizada. Modificando um instrumento que voou em 2015, acoplaram o seu observatório solar num foguete de sondagem. Este tipo de foguetes é lançado para o espaço para breves pesquisas de alguns minutos antes de cair de volta à Terra. Mais acessíveis e rápidos de construir e voar do que missões com satélites maiores, são também um palco ideal para testar novas ideias e técnicas inovadoras.

Lançado a partir do Campo de Teste de Mísseis de White Sands, no estado norte-americano do Novo México, o foguete atingiu uma altitude de 274 km para uma visão do Sol acima da atmosfera da Terra, que de outra forma bloqueia certos comprimentos de onda da luz.

Enquanto o CLASP2 observava o Sol, o IRIS (Interface Region Imaging Spectrograph) da NASA e o satélite Hinode da JAXA/NASA, ambos observando o Sol a partir de órbita terrestre, ajustaram os seus telescópios para olhar para o mesmo local. Em coordenação, as três missões concentraram-se na mesma parte do Sol, mas perscrutaram profundidades diferentes. O Hinode focou-se na fotosfera, procurando linhas espectrais do ferro neutro aí formado. O CLASP2 visou três alturas diferentes dentro da cromosfera, examinando linhas espectrais do magnésio ionizado e do manganês. Entretanto, o IRIS media as linhas de magnésio em mais alta resolução, para calibrar os dados do CLASP2. Juntas, as missões monitoraram quatro camadas diferentes dentro e ao redor da atmosfera.

O aspeto mais impressionante dos dados foi o quão variada a cromosfera acabou por ser. Tanto ao longo da porção do Sol que foi estudada, quanto a diferentes alturas no seu interior, o campo magnético variou significativamente.

Na superfície do Sol, vemos campos magnéticos que mudam a distâncias curtas: mais acima, essas variações são muito mais difusas. Em alguns lugares, o campo magnético não alcançou todo o caminho até ao ponto mais alto medido, enquanto em outros lugares, ainda estava com força total.

A equipe espera usar esta técnica para medições magnéticas com várias alturas para mapear todo o campo magnético da cromosfera. Isto não apenas ajudaria na capacidade de prever o clima espacial, mas também forneceria informações importantes sobre a atmosfera em torno da nossa estrela. Em vez de apenas medir os campos magnéticos ao longo de uma faixa muito estreita, a equipe quer examiná-los ao longo do alvo e fazer um mapa bidimensional.

Um artigo científico foi publicado na revista Science Advances.

Fonte: National Astronomical Observatory of Japan

sábado, 22 de agosto de 2020

O Sol pode ter começado a sua vida com uma companheira binária

Uma nova teoria sugere que o Sol pode ter tido uma companheira binária de massa semelhante.

© M. Weiss (ilustração de uma potencial companheira solar)

Se confirmada, a presença de uma companheira estelar precoce aumenta a probabilidade de que a nuvem de Oort se tenha formado conforme observado e que o Planeta Nove tenha sido capturado em vez de formado dentro do Sistema Solar. 

O Dr. Avi Loeb, professor de Ciências da Universidade de Harvard, e Amir Siraj, estudante da mesma instituição, postularam que a existência de uma companheira estelar binária no aglomerado natal do Sol, a coleção de estrelas formadas juntamente com o Sol a partir da mesma nuvem densa de gás molecular, poderia explicar a formação da nuvem de Oort como a observamos hoje. 

A teoria popular associa a formação da nuvem de Oort com detritos deixados para trás da formação do Sistema Solar e dos seus vizinhos, onde objetos foram espalhados pelos planetas a grandes distâncias e alguns foram trocados entre estrelas. Mas um modelo binário pode ser a peça que faltava neste desafio e, segundo Siraj, não deve ser uma surpresa para os cientistas. "Os modelos anteriores tiveram dificuldade em produzir a proporção esperada de objetos dispersos do disco e objetos da nuvem de Oort. O modelo de captura binária fornece melhorias e refinamentos significativos, o que é aparentemente óbvio em retrospetiva: a maioria das estrelas parecidas com o Sol nascem com companheiras binárias." 

Se a nuvem de Oort foi realmente capturada com a ajuda de uma companheira estelar precoce, as implicações para a nossa compreensão da formação do Sistema Solar seriam significativas. "Os sistemas binários são muito mais eficientes na captura de objetos do que estrelas simples," disse Loeb. "Se a nuvem de Oort se formou conforme observado, isso implicaria que o Sol de fato teve uma companheira de massa semelhante que se perdeu antes de deixar o aglomerado onde nasceu." 

Mais do que apenas redefinir a formação do nosso Sistema Solar, a evidência de uma nuvem de Oort capturada poderia responder a perguntas sobre a origem da vida na Terra. "Objetos na nuvem de Oort podem ter desempenhado papéis importantes na história da Terra, como possivelmente transportar água para a Terra e provocar a extinção dos dinossauros," comentou Siraj. "Compreender as suas origens é importante." 

O modelo também tem implicações para o hipotético Planeta Nove, que Loeb e Siraj pensam não estar sozinho. "O quebra-cabeça não é apenas em relação às nuvens de Oort, mas também a objetos trans-Netunianos extremos, como o potencial Planeta Nove," disse Loeb. "Não está claro de onde vieram, e o nosso novo modelo prevê que devem existir mais objetos com uma orientação orbital semelhante à do Planeta Nove."

Tanto a nuvem de Oort quanto a localização proposta do Planeta Nove estão tão distantes do Sol que a observação direta e a avaliação são um desafio para os pesquisadores de hoje. Mas o Observatório Vera C. Rubin, que verá a sua primeira luz no início de 2021, irá confirmar ou negar a existência do Planeta Nove e suas origens. Siraj está otimista: "Se o Observatório Vera C. Rubin verificar a existência do Planeta Nove, e uma origem capturada, e também encontrar uma população de planetas anões capturados de forma semelhante, o modelo binário será favorecido em detrimento da história estelar solitária que tem sido assumida há tanto tempo." 

Se o Sol teve uma companheira precoce que contribuiu para a formação do Sistema Solar exterior, a sua ausência atual levanta a questão: para onde foi? "As estrelas do aglomerado natal teriam removido a companheira do Sol por meio da sua influência gravitacional," disse Loeb. "Antes da perda do binário, no entanto, o Sistema Solar já teria capturado o seu invólucro externo de objetos, ou seja, a nuvem de Oort e a população do Planeta Nove." Siraj acrescentou: "A companheira há muito perdida do Sol pode estar agora em qualquer lugar da Via Láctea."

A nova teoria foi publicada no periódico The Astrophysical Journal Letters.

Fonte: Harvard-Smithsonian Center for Astrophysics

terça-feira, 23 de junho de 2020

Raios X de estrela fornecem pistas dos primeiros dias do nosso Sol

Ao detectar um surto de raios X de uma estrela muito jovem com o observatório de raios X Chandra da NASA, pesquisadores redefiniram a linha temporal de quando estrelas como o Sol começam a liberar radiação altamente energética para o espaço. Isto é significativo porque pode ajudar a responder a algumas perguntas sobre os primeiros dias do nosso Sol e também sobre o Sistema Solar de hoje.


© NASA/M. Weiss (ilustração de HOPS 383)

A imagem mostra o objeto onde os astrônomos descobriram o surto de raios X. HOPS 383 é chamada uma "protoestrela" jovem porque está na fase inicial da evolução estelar que ocorre logo após o início do colapso de uma grande nuvem de gás e poeira. Uma vez amadurecida, HOPS 383, localizada a cerca de 1.400 anos-luz da Terra, terá uma massa equivalente a mais ou menos metade da massa do Sol.

A ilustração mostra HOPS 383 rodeada por um casulo de material com a forma de um donut (castanho escuro), contendo cerca de metade da massa da protoestrela, que está  caindo em direção à estrela central. Grande parte da luz da estrela em HOPS 383 é incapaz de perfurar este casulo, mas os raios X do surto (azul) são poderosos o suficiente para o fazer. A radiação infravermelha emitida por HOPS 383 é espalhada pelo interior do casulo (branco e amarelo).

As observações do Chandra, em dezembro de 2017, revelaram o surto de raios X, que durou cerca de 3 horas e 20 minutos. O rápido aumento e a lenta diminuição da quantidade de raios X são semelhantes ao comportamento dos raios X de estrelas jovens mais evoluídas que HOPS 383. Não foram detectados raios X oriundos da protoestrela fora deste período, o que implica que durante estas vezes HOPS 383 era pelo menos dez vezes mais fraca, em média, do que o surto no seu máximo. Também é 2.000 vezes mais potente do que o surto de raios X mais brilhante observado no Sol, uma estrela de meia-idade com massa relativamente baixa.

À medida que o material do casulo cai para dentro em direção ao disco, há também um êxodo de gás e poeira. Este fluxo exterior remove momento angular do sistema, permitindo que o material caia do disco para a jovem protoestrela em crescimento. Um fluxo deste tipo foi visto em HOPS 383 e é possível que os poderosos surtos de raios X como o observado pelo Chandra podem retirar elétrons dos átomos. Isto pode ser importante para direcionar o fluxo por forças magnéticas.



© NASA/Chandra/N. Grosso (HOPS 383 Timelapse)

Além disso, quando a estrela expeliu raios X, provavelmente também teria impulsionado fluxos energéticos de partículas que colidiram com grãos de poeira localizados na orla interna do disco de material que gira em torno da protoestrela. Supondo que algo semelhante aconteceu no nosso Sol, as reações nucleares provocadas por esta colisão podem explicar as abundâncias incomuns de elementos em certos tipos de meteoritos encontrados na Terra.

Não foi detectado nenhum outro surto em HOPS 383 ao longo de três observações com o Chandra, totalizando um tempo de exposição pouco inferior a um dia. Os astrônomos vão precisar de observações de raios X mais longas para determinar a frequência de tais explosões durante esta fase inicial de desenvolvimento de estrelas como o nosso Sol.

Fonte: Harvard-Smithsonian Center for Astrophysics

domingo, 20 de janeiro de 2019

Proeminências solares: desde o aparecimento até à erupção

Pela primeira vez, uma equipe de cientistas usou um modelo computacional único e coeso para simular todo o ciclo de vida de uma erupção solar: desde a acumulação de energia milhares de quilômetros abaixo da superfície solar, passando pela emergência de linhas emaranhadas de campo magnético, até à liberação explosiva de energia num flash brilhante.


© Mark Cheung/Matthias Rempel (animação da proeminência solar)

Esta visualização é uma animação da proeminência solar modelada no novo estudo. A cor violeta representa plasma, com uma temperatura inferior a 1 milhão Kelvin. O vermelho representa temperaturas entre 1 milhão e 10 milhões Kelvin, e o verde representa temperaturas acima dos 10 milhões Kelvin.

O feito define o cenário para os futuros modelos solares simularem realisticamente o próprio clima do Sol à medida que se desenrola em tempo real, incluindo o aparecimento de manchas solares, que por vezes produzem proeminências e ejeções de massa coronal. Estas erupções podem ter impactos generalizados na Terra, desde interromper redes de energia e redes de comunicações, até prejudicar satélites e pondo os astronautas em perigo.

A pesquisa foi liderada por cientistas do NCAR (National Center for Atmospheric Research) e do Laboratório de Física Solar e Astrofísica da Lockheed Martin. A nova simulação abrangente captura a formação de uma erupção solar de forma mais realista do que os esforços anteriores, e inclui o espectro de emissões de luz conhecidas por estarem associadas a explosões no Sol.

Para o novo estudo, os cientistas tiveram que construir um modelo solar que pudesse estender-se por várias regiões do Sol, capturando o comportamento físico complexo e único de cada uma.

O modelo resultante começa na parte superior da zona de convecção, cerca de 10.000 quilômetros abaixo da superfície do Sol, sobe através da superfície solar e vai até 40.000 km para a atmosfera solar, conhecida como coroa. As diferenças na densidade do gás, na pressão e em outras características do Sol, representadas em todo o modelo, são vastas.

Para simular com sucesso uma erupção solar desde o aparecimento até à liberação de energia, os cientistas precisaram acrescentar equações detalhadas ao modelo que permitissem com que cada região contribuísse para a evolução da erupção solar de maneira realista. Mas também tiveram que ter cuidado para não tornar o modelo tão complicado que deixasse de ser prático a sua execução nos recursos disponíveis de supercomputação.

Para resolver os desafios, foi utilizada uma técnica matemática historicamente usada por pesquisadores que estudam as magnetosferas da Terra e dos outros planetas. A técnica, que permitiu que os cientistas comprimissem a diferença nas escalas de tempo entre as camadas sem perder a precisão, fez com que fosse criado um modelo que realista e computacionalmente eficiente.

O próximo passo foi configurar um cenário do Sol simulado. Em pesquisas anteriores, usando modelos menos complexos, os cientistas precisaram iniciar os modelos quase no momento em que a erupção ia acontecer para conseguirem formar uma explosão.

No novo estudo, a equipe queria ver se o seu modelo podia gerar uma erupção autonomamente. Começaram por criar um cenário com condições inspiradas por uma mancha solar particularmente ativa observada em março de 2014. A mancha solar propiciou dúzias de erupções durante o tempo em que foi visível, incluindo uma pertencente à poderosa classe-X e três moderadamente poderosas de classe-M. Os cientistas não tentaram imitar a mancha solar de 2014 com precisão; ao invés, tentaram aproximar os mesmos ingredientes solares que estavam presentes à época, e que foram tão eficazes na produção de proeminências.

Em seguida, deixaram o modelo correr, vendo se este conseguia produzir uma erupção por conta própria.

O modelo foi capaz de capturar todo o processo, desde a acumulação de energia, passando pela subida até à superfície, até à coroa, energizando a coroa, e depois chegando ao ponto em que a energia é liberada numa erupção solar.

Agora que o modelo mostrou ser capaz de simular realisticamente todo o ciclo de vida de uma erupção solar, os cientistas vão testá-lo com observações reais do Sol e ver se consegue simular com sucesso o que realmente ocorre na superfície solar.

Um artigo foi publicado na revista Nature Astronomy.

Fonte: National Center for Atmospheric Research

sexta-feira, 23 de novembro de 2018

Detectada uma irmã gêmea do Sol

Uma equipe internacional usou um novo método para detectar irmãs do Sol.

aglomerado aberto de estrelas Trumpler 14

© ESO/H. Sana (aglomerado aberto de estrelas Trumpler 14)

A imagem acima mostra o aglomerado aberto de estrelas Trumpler 14, um aglomerado com mais de duas mil estrelas, semelhante àquele onde terá nascido o Sol.

Estima-se que serão milhares as estrelas irmãs do Sol que se formaram no mesmo aglomerado juntamente com a nossa estrela, há cerca de 4,6 bilhões de anos. Com o passar do tempo, as estrelas do aglomerado espalharam-se pela nossa Galáxia, o que dificulta a sua detecção.

A equipe foi liderada pelo pesquisador Vardan Adibekyan, do Instituto de Astrofísica e Ciências do Espaço (IA) e Universidade do Porto. "Como não há muita informação acerca do passado do Sol, estudar estas estrelas pode ajudar-no a perceber onde na Galáxia, e em que condições, se formou o Sol," disse Adibekyan.

"Com a colaboração de Patrick de Laverny e Alejandra Recio-Blanco, do Observatório da Côte d'Azur, obtivemos uma amostra de 230.000 espectros, do Projeto AMBRE," acrescenta Adibekyan.

AMBRE é um projeto de arqueologia galáctica, montado pelo ESO e pelo Observatório da Côte d’Azur, para determinar os parâmetros estelares dos espectros em arquivo, provenientes dos espectrógrafos FEROS, HARPS, UVES e GIRAFFE do ESO.

Em seguida, a equipe usou estes espectros do AMBRE, em conjunto com dados astrométricos muito precisos da missão GAIA da ESA, de modo a fazer uma seleção de estrelas com composições químicas semelhantes à do Sol, seguido de um cálculo das suas idades e propriedades cinemáticas.

Apesar de terem descoberto apenas uma irmã do Sol nesta pesquisa, a HD186302, esta é muito especial. Esta estrela de tipo G3 da sequência principal não é só uma irmã do Sol, tendo em conta as suas idades e composição química, como é também uma irmã gêmea.

As estrelas irmãs do Sol podem ser boas candidatas à procura de vida, pois há a possibilidade da vida ter sido transportada entre planetas das estrelas do aglomerado solar. Esta transferência de vida entre sistemas exoplanetários é conhecida por litopanspermia.

"Alguns modelos teóricos mostram uma probabilidade não negligenciável da vida se ter espalhado a partir da Terra, até outros planetas ou sistemas exoplanetários, durante o período de bombardeamento tardio do Sistema Solar. Se tivermos sorte, e a nossa estrela irmã do Sol tiver um planeta, e o planeta for rochoso, na zona de habitabilidade, e finalmente, se este planeta tiver sido 'contaminado' pelas sementes de vida da Terra, então temos o que nós sempre sonhamos, uma Terra 2.0, orbitando um Sol 2.0," complementou Adibekyan.

A equipe do IA planeja agora começar uma campanha de busca de planetas em volta desta estrela, recorrendo aos espectrógrafos HARPS e ESPRESSO. Encontrar e caracterizar sistemas planetários em volta de estrelas irmãs do Sol pode revelar informação extremamente importante acerca do resultado de formação planetária num ambiente partilhado.

O artigo foi publicado na revista Astronomy & Astrophysics.

Fonte: Instituto de Astrofísica e Ciências do Espaço