Mostrando postagens com marcador Via Láctea. Mostrar todas as postagens
Mostrando postagens com marcador Via Láctea. Mostrar todas as postagens

sábado, 2 de março de 2024

Encontrada galáxia antiga maior que a Via Láctea

O telescópio espacial James Webb (JWST) encontrou uma galáxia no universo primitivo que é tão massiva que não deveria existir, representando um desafio ao modelo padrão da cosmologia, de acordo com os autores do estudo.

© JWST (galáxia massiva ZF-UDS-7329)

A galáxia, chamada ZF-UDS-7329, contém mais estrelas do que a Via Láctea, apesar de ter se formado apenas 800 milhões de anos nos 13,8 bilhões de anos de existência do Universo. Isto significa que, de alguma forma, nasceram sem a matéria escura semear a sua formação, ao contrário do que sugere o modelo padrão de formação de galáxias. 

Não está claro como isso poderia ter acontecido, mas, assim como as descobertas anteriores do JWST de outras galáxias inexplicavelmente massivas no universo primitivo, ameaçando mudar nossa compreensão de como a primeira matéria no Universo se formou. 

Isto acontece porque as estruturas massivas de matéria escura, que se pensa serem componentes necessários para manter unidas as primeiras galáxias, ainda não tiveram tempo de se formar tão cedo no Universo. A luz viaja a uma velocidade fixa através do vácuo do espaço, portanto, quanto mais fundo olhamos para o Universo, mais distante a luz interceptamos e mais para trás no tempo vemos. Foi isto que permitiu aos pesquisadores usar o JWST para detectar ZF-UDS-7329 há cerca de 11,5 bilhões de anos. 

Ao estudar os espectros de luz provenientes das estrelas desta galáxia extremamente distante, foi descoberto que as estrelas nasceram 1,5 bilhões de anos antes desta observação, ou cerca de 13 bilhões de anos atrás. Os astrônomos não têm a certeza de quando é que os primeiros glóbulos de estrelas começaram a aglomerar-se nas galáxias que vemos hoje, mas os cosmólogos estimaram anteriormente que o processo começou lentamente nas primeiras centenas de milhões de anos após o Big Bang. 

As teorias atuais sugerem que halos de matéria escura (uma substância misteriosa e invisível que se acredita constituir 25% do Universo atual) combinaram-se com gás para formar as primeiras estruturas de galáxias. Após 1 bilhão a 2 bilhões de anos de existência do Universo, as primeiras protogaláxias atingiram a adolescência, formando-se em galáxias anãs que começaram a devorar-se umas às outras para se transformarem em galáxias como a Via Láctea. 

Mas a nova descoberta confundiu esta visão: não só a galáxia cristalizou sem acumular matéria escura suficiente para a semear, mas não muito depois de uma súbita explosão de formação estelar, a galáxia tornou-se abruptamente quiescente, o que significa que a sua formação estelar cessou. 

A questão chave agora é como é que se formam tão rapidamente no início do Universo, e que mecanismos misteriosos levam a impedir a formação de estrelas abruptamente quando o resto do Universo o faz. Os próximos passos dos pesquisadores serão procurar mais galáxias como esta. Se encontrarem alguma, isto poderia contradizer seriamente as ideias anteriores sobre como as galáxias se formaram.

Um artigo foi publicado na revista Nature.

Fonte: Swinburne University of Technology

terça-feira, 31 de outubro de 2023

Novas pistas para a formação e evolução das estrelas na Via Láctea

Após estudos comparativos de uma amostra de quase 50 aglomerados abertos de diferentes idades na Via Láctea, uma pesquisa mostra que, quando estes aglomerados estelares envelhecem, perdem a maioria dos seus membros menos massivos.

© IAC / D. López (Plêiades)

A pesquisa foi conduzida pelo IAC (Instituto de Astrofísica de Canarias) e pela ULL (Universidad de La Laguna), com a colaboração da Universidade Politécnica de Cartagena, cujo resultado confirma que existem processos dinâmicos internos nos aglomerados abertos, causados pelas suas longas viagens através da Galáxia, que provocam a expulsão destas estrelas de baixa massa. O estudo utilizou dados do satélite Gaia da ESA. 

Um aglomerado aberto é um grupo de estrelas que se formou a partir de uma única nuvem molecular. Os exemplos mais conhecidos são as Plêiades (M45) e as Híades, que podem ser vistas a olho nu no céu de inverno. Os aglomerados abertos são constituídos por várias centenas a vários milhares de estrelas, que estão ligadas entre si pela gravidade, embora menos fortemente do que os aglomerados globulares. 

Dado que todas as estrelas de um aglomerado têm a mesma origem, idade e composição química, as suas propriedades são mais fáceis de determinar do que as de estrelas isoladas, o que torna os aglomerados muito úteis para o estudo da formação e evolução estelar. As estrelas nos aglomerados abertos compartilham também um movimento comum pelo espaço, derivado do movimento da nuvem molecular a partir da qual se formaram. O estudo deste movimento permite distinguir as estrelas de um determinado aglomerado de estrelas que se encontram ao longo da mesma linha de visão, mas que não fazem parte do mesmo, e saber com segurança que nasceram ao mesmo tempo, que estão a uma distância comum da Terra e que estão relacionadas entre si como um grupo. 

Uma equipe de cientistas liderada pela pesquisadora do IAC, Maruska Zerjal, utilizou as últimas medições do satélite Gaia da ESA para estudar os movimentos das estrelas que fazem parte de 50 aglomerados abertos a uma distância moderada do Sol. Ao escolher a amostra, foi estabelecido um limite de distância de 1.500 anos-luz e um limite de idade de 1 bilhão de anos, o que é 4,6 vezes inferior à idade do Sol. Dentro destes limites, foi possível detectar estrelas com pouca massa, menos de metade da massa do Sol, que são muito mais difíceis de detectar do que estrelas mais massivas e brilhantes.

Foi considerado este limite superior para a distância porque as estrelas de baixa massa são demasiado tênues para serem observadas como objetos isolados quando estão longe de nós, e para a idade porque sabe-se que em aglomerados muito antigos este tipo de estrelas é quase indetectável. 

Uma vez identificados os aglomerados, eles foram classificados em três grupos e analisadas a distribuição do brilho das estrelas que os compõem. Depois de analisar cada grupo, a equipe mostrou que nos aglomerados mais antigos estudados, entre 100 milhões e 800 milhões de anos, há uma perda constante das estrelas menos massivas. Os aglomerados mais jovens, por outro lado, apresentam todos uma distribuição estelar semelhante, com as mesmas proporções dos diferentes tipos de estrelas, desde as mais massivas e brilhantes às menos massivas e mais fracas.

Esta descoberta implica duas conclusões importantes. Em primeiro lugar, a distribuição da massa das estrelas em aglomerados jovens parece ser um fenômeno universal. Em segundo lugar, nos aglomerados abertos existem processos dinâmicos internos devido às suas longas viagens através da Galáxia, que os levam a perder estrelas de baixa massa.

O catálogo dos aglomerados analisados está disponível no arquivo astronômico público do CDS (Centre de Données astronomiques de Strasbourg). Além disso, para tornar os resultados ainda mais acessíveis a um público mais vasto, a equipe desenvolveu um website interativo com todos os aglomerados e as estrelas que os compõem, o GAIA Open Clusters.

Um artigo foi publicado no periódico Astronomy & Astrophysics. 

Fonte: Instituto de Astrofísica de Canarias

domingo, 1 de outubro de 2023

Nova revisão da massa da Via Láctea

Graças ao catálogo mais recente do satélite Gaia da ESA, uma equipe internacional liderada por astrônomos do Observatório de Paris e do CNRS (Centre National de la Recherche Scientifique) obteve a medição mais precisa da massa da Via Láctea.

© NASA / JPL-Caltech (ilustração da Via Láctea)

Este estudo abre questões importantes na cosmologia, nomeadamente acerca da quantidade de matéria escura contida na nossa Galáxia. A massa total da Via Láctea está estimada em apenas 200 bilhões de vezes a do Sol, o que representa uma revisão em baixa significativa, cerca de quatro a cinco vezes inferior às estimativas anteriores. 

Este novo valor foi obtido a partir do terceiro lançamento de dados do catálogo Gaia, publicado em 2022, que fornece dados abrangentes sobre 1,8 bilhões de estrelas, englobando as três componentes espaciais e as três componentes de velocidade num espaço de seis dimensões dentro da Via Láctea. 

Utilizando os dados do Gaia, os cientistas conseguiram construir a curva de rotação mais exata alguma vez observada para uma galáxia espiral e deduzir a massa da Via Láctea. Antes do Gaia, obter uma curva de rotação robusta para a Via Láctea era um desafio, ao contrário do que acontecia com as outras galáxias espirais. Este desafio resultava da nossa posição no interior da Via Láctea, o que tornava impossível distinguir com precisão os movimentos e as distâncias das estrelas no disco galáctico. 

No estudo recente, a curva de rotação da nossa Galáxia é atípica: ao contrário das determinadas para outras grandes galáxias espirais, não é achatada. Pelo contrário, na periferia do disco da nossa Galáxia, esta curva começa a diminuir rapidamente, seguindo a previsão conhecida como declínio Kepleriano. 

A obtenção de uma curva de rotação para a Via Láctea que exiba um declínio Kepleriano exige que a nossa Galáxia seja enquadrada num contexto cosmológico. Um dos maiores avanços da astronomia moderna foi a constatação de que as velocidades de rotação dos grandes discos das galáxias espirais eram muito mais rápidas do que seria de esperar de um declínio Kepleriano. 

Na década de 1970, os astrônomos: Vera Rubin, que utilizou observações de gás ionizado, e Albert Bosma, que estudou gás neutro, demonstraram que a velocidade de rotação das galáxias espirais permanece constante, muito para além dos seus discos ópticos.

A consequência imediata desta descoberta foi a proposta da existência de matéria escura, adicional à matéria observável, distribuída num halo que envolve os discos das galáxias espirais. Sem esta matéria escura, as curvas de rotação teriam seguido um declínio Kepleriano. Este último indica a ausência de quantidades significativas de matéria fora do disco óptico. É o caso da Via Láctea, segundo o estudo atual. 

Considerando que a matéria comum (estrelas e gás frio) da Via Láctea é geralmente estimada em pouco mais de 0,6x10¹¹ massas solares, representa cerca de um-terço da matéria total. Este fato constitui uma revolução na cosmologia, uma vez que até agora se concordava que a matéria escura deveria ser pelo menos seis vezes mais abundante do que a matéria comum. 

Se a maioria das outras grandes galáxias espirais não exibe uma curva de rotação com um declínio Kepleriano, o que é que torna a nossa Galáxia tão diferente? Uma explicação possível pode ser que a Via Láctea tenha sofrido relativamente poucas perturbações devido a colisões violentas entre galáxias. A sua última grande fusão ocorreu há cerca de 9 bilhões de anos, em contraste com a média de 6 bilhões de anos para outras galáxias espirais. Em qualquer caso, isto indica que a curva de rotação obtida para a Via Láctea é particularmente precisa, não sendo afetada pelos resíduos de uma colisão tão antiga.

A segunda possibilidade pode surgir das diferenças metodológicas entre a curva de rotação derivada dos dados de seis dimensões de estrelas fornecidos pelo satélite Gaia, por exemplo, para a Via Láctea, e as curvas de rotação derivadas usando gás neutro para outras galáxias. Este trabalho abre caminho para uma reavaliação das curvas de rotação das grandes galáxias espirais e do seu conteúdo em matéria comum e escura. 

Um artigo foi publicado no periódico Astronomy & Astrophysics

Fonte: Observatoire de Paris

sábado, 24 de junho de 2023

O buraco negro central da Via Láctea "acordou" há 200 anos

O buraco negro supermassivo Sagitário A* no centro da Via Láctea, é muito menos luminoso do que outros buracos negros nos centros de galáxias que podemos observar, o que significa que o buraco negro central da nossa Galáxia não tem devorado ativamente o material à sua volta.

© IXPE / Chandra (raios X da área ao redor de Sagitário A*)

O painel inferior combina dados do IXPE, em laranja, com dados do Chandra, em azul. O painel superior mostra um campo de visão muito mais alargado do centro da Via Láctea. As finas linhas brancas sobrepostas no painel superior enquadram a área realçada e indicam que a perspectiva no painel inferior foi rodada cerca de 45 graus para a direita.

Novas evidências do telescópio IXPE (Imaging X-ray Polarimetry Explorer) da NASA sugerem que o velho gigante adormecido acordou recentemente, há cerca de 200 anos, para absorver gás e outros detritos cósmicos ao seu alcance. 

Sagitário A* fica a mais de 25.000 anos-luz da Terra, o buraco negro supermassivo mais próximo, com uma massa estimada em milhões de vezes a do nosso Sol. Ele situa-se na direção da constelação de Sagitário, no coração da Via Láctea. 

Os cientistas recorreram ao IXPE para um olhar mais atento quando estudos anteriores de raios X detectaram emissões de raios X relativamente recentes provenientes de nuvens gigantes de gás na sua vizinhança. Dado que a maioria das nuvens cósmicas, chamadas "nuvens moleculares", são frias e escuras, as assinaturas de raios X destas nuvens deveriam ter sido tênues. Em vez disso, brilharam intensamente. 

Um dos cenários para explicar porque é que estas nuvens moleculares gigantes estão brilhando é que estão ecoando um flash de luz de raios X que já passou há muito tempo, indicando que o nosso buraco negro supermassivo não estava assim tão quiescente há alguns séculos atrás. 

O IXPE, que mede a polarização dos raios X, ou a direção e intensidade médias do campo elétrico das ondas de luz, foi apontado para estas nuvens moleculares durante dois períodos de estudo, em fevereiro e março de 2022. Quando os astrônomos combinaram os dados resultantes com imagens do observatório de raios X Chandra da NASA e os compararam com observações de arquivo da missão XMM-Newton da ESA, puderam isolar o sinal de raios X refletido e descobrir o seu ponto de origem.

O ângulo de polarização atua como uma bússola, apontando-nos para a misteriosa fonte de iluminação há muito desaparecida. E o que se encontra nessa direção? Nada mais nada menos do que Sgr A*. Analisando os dados, a equipe descobriu que os raios X das nuvens moleculares gigantes eram luz refletida de uma erupção intensa e de curta duração produzida por ou perto de Sgr A*, possivelmente causada pelo buraco negro que consumiu abruptamente material próximo. Os dados também ajudaram os pesquisadores a estimar a luminosidade e a duração do surto original, sugerindo que o evento ocorreu aproximadamente no início do século XIX.

O próximo objetivo da equipe é repetir a observação e reduzir as incertezas da medição. Os dados de acompanhamento poderão melhorar as estimativas de quando a erupção ocorreu e qual a sua intensidade no pico, e ajudarão a determinar a distribuição tridimensional das nuvens moleculares gigantes que rodeiam o buraco negro quiescente. Estes estudos ajudam a compreender melhor os processos físicos necessários para despertar Sgr A* novamente, mesmo que apenas temporariamente, do seu sono inquieto. Sabemos que as mudanças podem ocorrer, nas galáxias ativas e nos buracos negros supermassivos, ao longo de uma escala humana de tempo.

Um artigo foi publicado na revista Nature

Fonte: Harvard-Smithsonian Center for Astrophysics

domingo, 11 de junho de 2023

Descobertos filamentos horizontais e radiais no centro da Via Láctea

Uma equipe internacional de astrofísicos descobriu algo totalmente novo, escondido no centro da nossa Galáxia, a Via Láctea.

© MeerKAT (filamentos no centro da Via Láctea)

Imagem do Centro Galáctico com a identificação e posição de todos os filamentos. A cor dos filamentos indica o ângulo

No início da década de 1980, Farhad Yusef-Zadeh, da Universidade Northwestern, descobriu filamentos gigantescos e unidimensionais que pendiam verticalmente perto de Sagitário A*, o buraco negro supermassivo central da nossa Galáxia. Agora, Yusef-Zadeh e os seus colaboradores descobriram uma nova população de filamentos, mas estes são muito mais curtos e encontram-se na horizontal ou na radial, espalhando-se a partir do buraco negro. Sendo que o centro da Via Láctea está localizado a 25.000 anos-luz da Terra. 

Embora as duas populações de filamentos partilhem várias semelhanças, Yusef-Zadeh assume que têm origens diferentes. Embora os filamentos verticais varram a Galáxia, elevando-se até 150 anos-luz de altura, os filamentos horizontais parecem-se mais com os pontos e traços do código Morse, pontuando apenas um dos lados de Sagitário A*. Ao estudar tais filamentos, é possível aprender mais sobre a rotação do buraco negro e a orientação do disco de acreção. 

O último estudo baseia-se em quatro décadas de pesquisa. Depois de ter descoberto os filamentos verticais em 1984 com Mark Morris e Don Chance, Yusef-Zadeh, juntamente com Ian Heywood e os seus colaboradores, descobriram mais tarde duas bolhas gigantescas emissoras de rádio perto de Sagitário A*. Depois, foram revelados cerca de 1.000 filamentos verticais, que apareciam aos pares e em grupos, muitas vezes empilhados a separações idênticas ou lado a lado, como cordas numa harpa. 

As novas descobertas foram oriundas do auxílio do telescópio MeerKAT do SARAO (South African Radio Astronomy Observatory). Embora ambas as populações compreendam filamentos unidimensionais que podem ser vistos no rádio e pareçam estar ligados a atividades no Centro Galáctico, as semelhanças acabam aí. Os filamentos verticais são perpendiculares ao Plano Galáctico; os filamentos horizontais são paralelos ao plano, mas apontam radialmente para o centro da Galáxia, onde o buraco negro se encontra. Os filamentos verticais são magnéticos e relativistas; os filamentos horizontais parecem emitir radiação térmica. Os filamentos verticais englobam partículas que se movem a velocidades próximas da velocidade da luz; os filamentos horizontais parecem acelerar material térmico numa nuvem molecular. Existem várias centenas de filamentos verticais e apenas algumas centenas de filamentos horizontais. E os filamentos verticais, que medem até 150 anos-luz de altura, ultrapassam de longe o tamanho dos filamentos horizontais, que medem apenas 5 a 10 anos-luz. Os filamentos verticais também adornam o espaço em torno do núcleo da Galáxia; os filamentos horizontais parecem espalhar-se apenas para um lado, apontando para o buraco negro.

A nova descoberta está cheia de incógnitas e o trabalho de Yusef-Zadeh para desvendar os seus mistérios está apenas começando. Para já, só pode ser considerada uma explicação plausível sobre os mecanismos e as origens da nova população. 

Um artigo foi publicado no periódico The Astrophysical Journal Letters.

Fonte: Northwestern University

quinta-feira, 18 de maio de 2023

Uma vida solitária para as jovens estrelas no centro da Via Láctea

Segundo um novo estudo, as estrelas que vivem o mais perto do buraco negro no centro da Via Láctea não têm companheiras.

© GCOI (órbitas de estrelas S em torno do buraco negro supermassivo da Via Láctea)

Usando o Observatório W. M. Keck em Maunakea, Havaí, Devin Chu, astrônomo da GCOI (Galactic Center Orbits Initiative) da UCLA (Universidade da Califórnia em Los Angeles), liderou um levantamento de 10 anos que descobriu que estas "estrelas S", onde "S" significa Sagitário A*, o nome do buraco negro supermassivo no centro da nossa Galáxia, são todas individuais.

O resultado é surpreendente, uma vez que as estrelas S que a equipe observou incluem estrelas jovens e massivas de sequência principal, com apenas cerca de seis milhões de anos. Normalmente, as estrelas desta idade, que são 10 vezes mais massivas do que o nosso Sol, passam a sua infância emparelhadas com uma gêmea num sistema binário ou, por vezes, mesmo como trigêmeas. 

É provável que a poderosa influência do buraco negro supermassivo faça com que os sistemas estelares binários se fundam ou se tornem perturbados, onde uma estrela companheira é expulsa da região. Isto pode explicar porque é que não vemos nenhuma estrela com parceiras tão perto de Sagitário A*. 

Este estudo de uma década marca a primeira pesquisa sistemática de sistemas binários no aglomerado de estrelas S. Utilizando o sistema de ópticas adaptativas do observatório Keck, emparelhado com o seu instrumento OSIRIS (OH-Suppressing Infrared Imaging Spectrograph), os astrônomos seguiram os movimentos de 28 estrelas S; 16 das quais são estrelas jovens do tipo B da sequência principal e as restantes são estrelas velhas e de baixa massa do tipo M ou gigantes do tipo K. As ópticas adaptativas do Keck e o OSIRIS foram cruciais para nos darem a visão infravermelha de que precisávamos para espreitar através da poeira do Centro Galáctico e para distinguir as estrelas S individuais nesta região tão povoada. 

Os pesquisadores não só encontraram as estrelas S viajando sozinhas, como também conseguiram calcular o limite de quantas destas estrelas S poderiam existir como binários, uma métrica conhecida como fração binária. Descobriram que o limite da fração binária das estrelas S jovens é de 47%, o que significa que por cada 100 estrelas S, um máximo de 47 podem estar em sistemas binários. Este limite é dramaticamente mais baixo do que o esperado para tipos semelhantes de estrelas jovens na vizinhança solar, que têm uma fração binária de 70%. 

Esta descoberta sugere que as estrelas com companheiras têm dificuldade em manter-se juntas no ambiente extremo do buraco negro supermassivo da Via Láctea. A descoberta acrescenta ao caráter já exótico das estrelas S, cujo nascimento permanece um mistério. As forças de maré de um buraco negro perturbam normalmente a formação estelar tradicional, o que levanta questões sobre a forma como as estrelas S se conseguiram desenvolver no perigoso turbilhão cósmico que Sagitário A* cria. 

Um artigo foi publicado no periódico The Astrophysical Journal

Fonte: W. M. Keck Observatory

terça-feira, 10 de janeiro de 2023

Reveladas galáxias semelhantes à Via Láctea no Universo jovem

Novas imagens, obtidas pelo telescópio espacial James Webb, revelam pela primeira vez galáxias com barras estelares - características alongadas de estrelas que se estendem dos centros das galáxias para os seus discos exteriores - num momento em que o Universo tinha apenas 25% da sua idade atual.

© NASA (galáxia EGS23205)

O poder do JWST em mapear galáxias em alta resolução e em comprimentos de onda infravermelhos mais longos do que o Hubble, permite-lhe olhar através da poeira e revelar a estrutura subjacente e a massa de galáxias distantes. Isto pode ser visto nestas duas imagens da galáxia EGS23205, vista como era há cerca de 11 bilhões de anos atrás. Na imagem do Hubble (esquerda, tirada com o filtro infravermelho próximo), a galáxia é pouco mais do que uma mancha em forma de disco obscurecida pela poeira e impactada pelo brilho de estrelas jovens, mas na imagem do Webb correspondente no infravermelho médio, é uma bela galáxia em espiral com uma clara barra estelar.

A descoberta das chamadas galáxias barradas, semelhantes à nossa Via Láctea, tão cedo no Universo, vai exigir que os cientistas refinem as suas teorias sobre a evolução galáctica. Antes do Webb, as imagens do Hubble nunca tinham detectado barras em épocas tão jovens.

A equipe identificou outra galáxia barrada, EGS-24268, há cerca de 11 bilhões de anos, o que faz com que duas galáxias barradas existam mais longe no tempo do que qualquer outra galáxia anteriormente descoberta. Este estudo destaca estas duas galáxias e mostra exemplos de quatro outras galáxias barradas vistas há mais de 8 bilhões de anos. 

As barras desempenham um papel importante na evolução galáctica ao canalizarem gás para as regiões centrais, impulsionando a formação estelar. Uma barra transporta poderosamente gás para a região central, onde o gás é rapidamente convertido em novas estrelas a um ritmo tipicamente 10 a 100 vezes mais depressa do que no resto da galáxia. As barras também ajudam a fazer crescer buracos negros supermassivos nos centros das galáxias, canalizando o gás pelo caminho. 

A descoberta de barras durante tais épocas iniciais abala de várias maneiras os cenários de evolução galáctica. E a própria existência destas primeiras barras desafia os modelos teóricos, uma vez que precisam de acertar a física galáctica a fim de prever a abundância correta de barras. A equipe irá testar diferentes modelos nos seus próximos trabalhos. 

O telescópio espacial James Webb pode desvendar estruturas em galáxias distantes melhor do que o Hubble por duas razões: em primeiro lugar, o seu espelho maior dá-lhe mais capacidade de recolhimento de luz, permitindo-lhe ver mais longe e com maior resolução. Em segundo lugar, consegue ver melhor através da poeira, pois observa em comprimentos de onda infravermelhos mais longos do que o Hubble.

Um artigo foi aceito para publicação no periódico The Astrophysical Journal Letters.

Fonte: University of Texas

sexta-feira, 30 de dezembro de 2022

Desvendando o mistério das galáxias satélites da Via Láctea

Os astrônomos resolveram um problema pendente que desafiou a nossa compreensão de como o Universo evoluiu.


© Projeto SIBELIUS (um análogo virtual do Grupo Local)

A nossa Via Láctea é rodeada por uma série de galáxias satélites que exibem um alinhamento bizarro, parecem encontrar-se num enorme e fino plano de rotação, chamado "plano dos satélites". 

Modelo cosmológico padrão 

Este arranjo aparentemente improvável tem vindo a intrigar os astrônomos há mais de 50 anos, levando muitos a questionar o modelo cosmológico padrão. Este modelo procura explicar a formação do Universo e como as galáxias que vemos agora formaram-se gradualmente dentro de "tufos" de matéria escura fria, uma substância misteriosa que constitui cerca de 27% do Universo. Como não existe nenhum mecanismo físico conhecido que produza planos de satélites de longa duração, é pressuposto que a teoria da formação galáctica pela matéria escura fria poderia estar errada. 

Peculiaridade cosmológica 

A nova investigação da Universidade de Durham, realizada em conjunto com uma equipe internacional de cientistas, descobriu agora que o plano das galáxias satélites da Via Láctea é uma peculiaridade cosmológica. Utilizando dados do observatório espacial Gaia da ESA, os pesquisadores recorreram a tecnologia de supercomputador para projetar as órbitas das galáxias satélites para o passado e para o futuro. Viram o plano das galáxias formar-se e dissolver-se em algumas centenas de milhões de anos, um simples piscar de olhos no tempo cósmico. 

Sistemas de satélites virtuais 

Perceberam também que estudos anteriores baseados em simulações de computador não tinham considerado as distâncias dos satélites em relação ao centro da Via Láctea, o que fez com que os sistemas de satélites virtuais parecessem muito mais redondos do que o sistema real. Estabelecendo que foram encontradas várias Vias Lácteas virtuais que ostentavam um plano de galáxias satélites muito semelhante ao que é visto através dos telescópios. Dizem que isto remove uma das principais objeções ao modelo padrão da cosmologia e significa que o conceito de matéria escura fria continua a ser a pedra angular da nossa compreensão do Universo. 

Um artigo foi publicado na revista Nature Astronomy.

Fonte: University of Helsinki

segunda-feira, 14 de novembro de 2022

Os detritos planetários mais antigos da Via Láctea

Astrônomos, liderados pela Universidade de Warwick, identificaram a estrela mais antiga na nossa Galáxia que está acretando detritos de planetesimais em órbita, um dos mais antigos sistemas planetários rochosos e gelados descobertos na Via Láctea.

© M. Garlick (antigas anãs brancas rodeadas por detritos planetários)

Os seus achados concluem que uma tênue anã branca localizada a 90 anos-luz da Terra, bem como os remanescentes do seu sistema planetário em órbita, têm mais de 10 bilhões de anos. 

O destino da maioria das estrelas, incluindo aquelas como o nosso Sol, é tornarem-se uma anã branca. Uma anã branca é uma estrela que queimou todo o seu combustível e liberou as suas camadas exteriores e está agora sofrendo um processo de encolhimento e arrefecimento. Durante este processo, quaisquer planetas em órbita serão perturbados e, em alguns casos, destruídos, restando os seus detritos que acretam para a superfície da anã branca. 

Para este estudo, os astrônomos modelaram duas anãs brancas incomuns que foram detectadas pelo observatório espacial Gaia da ESA. Ambas as estrelas estão poluídas por detritos planetários, tendo uma delas sido encontrada com um tom azul, enquanto a outra é a mais tênue e vermelha encontrada até à data na nossa vizinhança galáctica. 

Usando dados espectroscópicos e fotométricos do Gaia, do DES (Dark Energy Survey) e do instrumento X-Shooter no ESO para determinar há quanto tempo está arrefecendo, os astrônomos descobriram que a estrela "vermelha" WDJ2147-4035 tem cerca de 10,7 bilhões de anos, dos quais 10,2 bilhões foram passados arrefecendo como uma anã branca. A espectroscopia envolve a análise da luz estelar em diferentes comprimentos de onda, que pode detectar quando os elementos da atmosfera da estrela estão absorvendo luz com cores diferentes e ajuda a determinar quais são estes elementos e em que quantidade.

Ao analisar o espectro de WDJ2147-4035, a equipe encontrou a presença dos metais sódio, lítio, potássio e tentativamente carbono, fazendo desta a anã branca mais antiga, poluída por metais, descoberta até agora. A segunda estrela "azul", WDJ1922+0233, é apenas ligeiramente mais nova que WDJ2147-4035 e foi poluída por detritos planetários de composição semelhante à da crosta continental da Terra.

Os astrônomos concluíram que a cor azul de WDJ1922+0233, apesar da sua fria temperatura superficial, é provocada pela sua incomum atmosfera mista de hélio-hidrogênio. Os detritos encontrados na atmosfera de hélio quase puro e de alta gravidade da estrela vermelha WDJ2147-4035 são de um antigo sistema planetário que sobreviveu à evolução da estrela em anã branca, levando os astrônomos a concluir que este é o mais antigo sistema planetário em torno de uma anã branca descoberta na Via Láctea. 

Estas estrelas poluídas por metais mostram que a Terra não é única, existem por aí outros sistemas planetários com corpos semelhantes à Terra, onde 97% de todas as estrelas se tornarão anãs brancas e são tão omnipresentes no Universo que são muito importantes de compreender, especialmente estas extremamente frias. Formadas a partir das estrelas mais antigas, as anãs brancas frias fornecem informações sobre a formação e evolução dos sistemas planetários em torno das estrelas mais antigas da Via Láctea. Nota-se que estes planetas morreram muito antes mesmo da Terra ter sido formada. 

Os astrônomos também podem utilizar os espectros da estrela para determinar a rapidez com que estes metais afundam no núcleo da estrela, o que lhes permite olhar para trás no tempo e determinar a abundância de cada um destes metais no corpo planetário original. Ao comparar destas abundâncias com corpos astronômicos e material planetário encontrado no nosso próprio Sistema Solar, é possível adivinhar como teriam sido estes planetas antes da estrela morrer e se tornar uma anã branca, mas no caso de WDJ2147-4035, isto provou ser um desafio.

A estrela vermelha WDJ2147-4035 é um mistério, uma vez que os detritos planetários que acretou são muito ricos em lítio e potássio, ao contrário de qualquer objeto conhecido no nosso próprio Sistema Solar. Esta é uma anã branca muito interessante, uma vez que a sua temperatura superficial ultrafria, os metais que a poluem, a sua idade, e o fato de ser magnética, a tornam extremamente rara.

Quando estas estrelas velhas se formaram, há mais de 10 bilhões de anos, o Universo era menos rico em metais do que é agora, uma vez que os metais são formados em estrelas evoluídas e em explosões estelares gigantescas. As duas anãs brancas observadas proporcionam uma janela excitante para a formação planetária num ambiente pobre em metais e rico em gás que era diferente das condições quando o Sistema Solar foi formado.

Um artigo foi publicado no periódico Monthly Notices of the Royal Astronomical Society

Fonte: University of Warwick

sexta-feira, 11 de novembro de 2022

O buraco negro mais próximo da Terra

Os astrônomos que utilizam o Observatório Gemini, operado pelo NOIRLab (National Optical-Infrared Astronomy Research Laboratory), descobriram o buraco negro mais próximo da Terra.

© NOIRLab (buraco negro e sua estrela companheira)

Esta é a primeira detecção inequívoca de um buraco negro de massa estelar dormente na Via Láctea. A sua proximidade da Terra fornece um intrigante alvo de estudo para o avanço da nossa compreensão da evolução dos sistemas binários. 

Os buracos negros são os objetos mais extremos do Universo. As versões supermassivas destes objetos inimaginavelmente densos residem provavelmente nos centros de todas as grandes galáxias. Os buracos negros de massa estelar, que têm aproximadamente entre cinco a 100 vezes a massa do Sol, são muito mais comuns, com uma estimativa de 100 milhões só na Via Láctea. No entanto, apenas um punhado foi confirmado até à data e quase todos eles são "ativos", o que significa que brilham em raios X à medida que consomem material de uma companheira estelar próxima, ao contrário dos buracos negros adormecidos que não o fazem.

O buraco negro mais próximo da Terra, é denominado Gaia BH1. Este buraco negro inativo é cerca de 10 vezes mais massivo do que o Sol e está localizado a cerca de 1.600 anos-luz de distância na direção da constelação de Ofiúco, tornando-o três vezes mais próximo da Terra do que o anterior detentor do recorde, um binário de raios X na direção da constelação de Unicórnio. 

A nova descoberta foi possível através de observações requintadas do movimento da companheira do buraco negro, uma estrela parecida com o Sol que orbita o buraco negro aproximadamente à mesma distância que a Terra orbita o Sol.

Embora existam provavelmente milhões de buracos negros de massa estelar vagando pela Via Láctea, os poucos que foram detectados foram descobertos devido às suas interações energéticas com uma estrela companheira. À medida que o material de uma estrela próxima espirala em direção ao buraco negro, torna-se sobreaquecido e gera poderosos raios X e jatos de material. 

A equipe identificou originalmente o sistema como potencialmente anfitrião de um buraco negro através da análise de dados da nave espacial Gaia da ESA. O observatório Gaia captou as minúsculas irregularidades no movimento da estrela provocadas pela gravidade de um objeto massivo e invisível. 

Para explorar o sistema com mais detalhe, os astrônomos utilizaram o instrumento GMOS (Gemini Multi-Object Spectrograph) no Gemini North, que mediu a velocidade da estrela companheira em órbita do buraco negro e forneceu uma medição precisa do seu período orbital. As observações de acompanhamento do Gemini foram cruciais para restringir o movimento orbital e, consequentemente, as massas dos dois componentes do sistema binário, permitindo a identificação do corpo central como um buraco negro cerca de 10 vezes mais massivo do que o nosso Sol. 

Os modelos atuais dos astrônomos sobre a evolução dos sistemas binários têm dificuldade em explicar como a peculiar configuração do sistema Gaia BH1 pode ter surgido. Especificamente, a estrela progenitora que mais tarde se transformou no buraco negro recentemente detectado teria sido pelo menos 20 vezes mais massiva do que o nosso Sol. Isto significa que teria vivido apenas alguns milhões de anos. Se ambas as estrelas se formaram ao mesmo tempo, esta estrela massiva teria se transformado rapidamente numa supergigante, inchando e engolindo a outra estrela antes de esta ter tido tempo de se tornar uma estrela normal de sequência principal, que queima hidrogênio, como o nosso Sol. 

Não é de todo claro como a estrela de massa solar pode ter sobrevivido a este episódio, acabando como uma estrela aparentemente normal, como indicam as observações do binário que abriga o buraco negro. 

Dos modelos teóricos que permitem a sobrevivência, todos preveem que a estrela de massa solar deveria ter acabado numa órbita muito mais íntima do que a atualmente observada. Isto pode indicar que existem importantes lacunas na nossa compreensão de como os buracos negros se formam e evoluem nos sistemas binários e também sugere a existência de uma população ainda não explorada de buracos negros dormentes em binários.

Um artigo foi publicado no periódico Monthly Notices of the Royal Astronomical Society.

Fonte: Gemini Observatory

sexta-feira, 23 de setembro de 2022

Detectada bolha de gás quente em torno do buraco negro da Via Láctea

Com o auxílio do Atacama Large Millimeter/submillimeter Array (ALMA), os astrônomos descobriram sinais de um ”ponto quente” em órbita de Sagitário A*, o buraco negro supermassivo no centro da nossa Galáxia.

© ESO (órbita do ponto quente em torno do buraco negro)

A descoberta nos ajuda a entender melhor o ambiente enigmático e dinâmico deste buraco negro supermassivo. A bolha quente de gás está girando em torno de Sagitário A* em uma órbita semelhante em tamanho à do planeta Mercúrio, mas fazendo um ciclo completo em apenas cerca de 70 minutos. Isto requer uma velocidade de cerca de 30% da velocidade da luz!

As observações foram obtidas com o ALMA nos Andes chilenos durante uma campanha da Colaboração EHT (Event Horizon Telescope) destinada a obter imagens de buracos negros. Em Abril de 2017, o EHT conectou oito radiotelescópios existentes em todo o mundo, incluindo o ALMA, para obter dados que resultaram na primeira imagem de Sagitário A*, recentemente divulgada.

Por acaso, algumas das observações tinham sido realizadas pouco depois de uma explosão de energia de raios X emitida a partir do centro da Via Láctea, que foi detectada pelo telescópio espacial Chandra da NASA. Acredita-se que estes tipos de explosões, observadas anteriormente por telescópios infravermelhos e de raios X, estejam associadas aos chamados “pontos quentes”, bolhas de gás quente que se deslocam a altas velocidades em órbitas muito próximas do buraco negro.

O que é mesmo novo e interessante é o fato destas explosões estarem, até agora, apenas claramente presentes em observações infravermelhas e de raios X de Sagitário A*. Nota-se, pela primeira vez, fortes indicações de que pontos quentes orbitando o buraco negro também estão presentes em observações de rádio. 

Pensou-se durante muito tempo que estas explosões teriam origem nas interações magnéticas do gás muito quente que orbita muito próximo de Sagitário A* e estes novos resultados apoiam esta ideia. 

O ALMA permite aos astrônomos estudar emissão de rádio polarizada de Sagitário A*, a qual pode ser usada para investigar o campo magnético do buraco negro. A equipe utilizou estas observações juntamente com modelos teóricos para aprender mais sobre a formação do ponto quente e o ambiente em que se encontra, incluindo o campo magnético que rodeia Sagitário A*. Esta pesquisa coloca limites mais fortes na forma deste campo magnético do que os conseguidos em observações anteriores, ajudando os astrônomos a descobrir a natureza do buraco negro e seus arredores.

As observações confirmam algumas das descobertas anteriores feitas com o auxílio do instrumento GRAVITY montado no Very Large Telescope (VLT) do ESO, que observa no infravermelho. Tanto os dados do GRAVITY como os do ALMA sugerem que a explosão tem origem em um aglomerado de gás que orbita em torno do buraco negro a cerca de 30% da velocidade da luz no sentido horário no céu, com a órbita do ponto quente quase de frente para nós. 

Esta pesquisa foi publicada na revista Astronomy & Astrophysics.

Fonte: ESO

quinta-feira, 12 de maio de 2022

Primeira imagem do buraco negro no coração da Via Láctea

Hoje, em coletivas de imprensa simultâneas em todo o mundo, inclusive na sede do Observatório Europeu do Sul (ESO), na Alemanha, os astrônomos divulgaram a primeira imagem do buraco negro supermassivo situado no centro da nossa própria Galáxia, a Via Láctea.

© EHT (primeira imagem do buraco negro central da Via Láctea)

Este resultado fornece evidências contundentes de que o objeto é de fato um buraco negro e fornece pistas valiosas sobre o funcionamento de tais gigantes, que se acredita existirem no centro da maioria das galáxias.

A imagem foi criada por uma equipe internacional de pesquisadores, a chamada Colaboração Event Horizon Telescope (EHT), a partir de observações obtidas por uma rede mundial de radiotelescópios. A imagem é uma visão muito esperada do objeto massivo que se encontra no centro da nossa Galáxia.

Os cientistas já tinham observado estrelas em órbita de algo invisível, compacto e muito massivo no centro da Via Láctea. Esse fato sugeria fortemente que este objeto, conhecido por Sagitário A* (Sgr A*), se tratava de um buraco negro e a imagem de hoje fornece a primeira evidência visual direta disso. Embora não possamos ver o buraco negro em si, já que é completamente escuro, o gás brilhante que o rodeia revela uma assinatura inconfundível: uma região central escura (chamada sombra) cercada por uma estrutura brilhante em forma de anel. A nova visão capta a luz que se curva sob a poderosa gravidade do buraco negro, que é quatro milhões de vezes mais massivo que o nosso Sol.

O tamanho do anel que foi observado está de acordo com as previsões da Teoria da Relatividade Geral de Albert Einstein. Estas observações sem precedentes fornecem informações de como é que estes buracos negros gigantes interagem com o meio que os rodeia.

Como o buraco negro está a uma distância de cerca de 27.000 anos-luz da Terra, ele aparece para nós no céu com o mesmo tamanho de uma rosquinha (donut) na Lua. Para observá-lo, a equipe criou um poderoso EHT, ligando entre si oito radiotelescópios existentes em todo o planeta, para formar um único telescópio virtual do “tamanho da Terra”, uma técnica denominada interferometria.

O EHT observou Sgr A* em 2017 durante várias noites, colectando dados ao longo de muitas horas seguidas, num processo semelhante a tirar uma fotografia de longa exposição com uma máquina fotográfica. Além de outras instalações, a rede EHT de observatórios no comprimento de onda rádio inclui o Atacama Large Millimeter/submillimeter Array (ALMA) e o Atacama Pathfinder EXperiment (APEX), ambos instalados no deserto do Atacama no Chile. A Europa contribuiu também para as observações EHT com outros observatórios nesta frequência, o Telescópio IRAM de 30 metros na Espanha e, desde 2018, o NOEMA (NOrthern Extended Millimeter Array) na França, além de um supercomputador que combina os dados EHT e que se encontra no Instituto Max Planck de Radioastronomia, na Alemanha.

Uma base sólida para a interpretação desta nova imagem foi fornecida por pesquisas anteriores realizadas em Sgr A*. Desde os anos 1970 que os astrônomos tinham conhecimento da fonte rádio brilhante e densa localizada no centro da Via Láctea na direção da constelação do Sagitário. Ao fazer medições das órbitas de várias estrelas muito próximas no nosso centro galáctico durante um período de 30 anos, equipes lideradas por Reinhard Genzel (Diretor do Instituto Max Planck de Física Extraterrestre, na Alemanha) e Andrea M. Ghez (Professor no Departamento de Física e Astronomia da Universidade da California, Los Angeles, EUA), concluiram que a explicação mais provável para um objeto dessa massa e densidade seria um buraco negro supermassivo. As infraestruturas do ESO (incluindo o Very Large Telescope e o Interferômetro do Very Large Telescope) e o Observatório Keck foram utilizados para realizar estes trabalhos, que partilharam o Prêmio Nobel de Física de 2020.

A conquista do EHT segue o lançamento da Colaboração em 2019 da primeira imagem de um buraco negro, chamado M87*, situado no centro de uma galáxia mais distante, a Messier 87 (M87). Os dois buracos negros são muito parecidos, embora o buraco negro da nossa galáxia seja mais de mil vezes menor e menos massivo que M87*. Os buracos negros são os únicos objetos que conhecemos em que as massas estão diretamente ligadas ao tamanho, ou seja, um buraco negro mil vezes menor que outro é também mil vezes menos massivo.

Este resultado foi consideravelmente mais difícil de se obter que o de M87*, apesar de Sgr A* se encontrar muito mais perto de nós. O gás que se encontra perto dos buracos negros se move à mesma velocidade, quase à velocidade da luz, tanto em torno de Sgr A* como em torno de M87*. No entanto, o gás leva dias a semanas para orbitar o muito maior M87*, enquanto que em torno do mais pequeno Sgr A* completa uma órbita em meros minutos. Consequentemente, o brilho e o padrão do gás que circunda Sgr A* variavam rapidamente à medida que ele é observado, um pouco como tentar tirar uma fotografia nítida de um cachorro que persegue a sua cauda a toda a velocidade.

Os pesquisadores tiveram que desenvolver novas ferramentas sofisticadas que explicassem o movimento do gás em torno de Sgr A*. Enquanto o M87* era um alvo mais fácil e estável, com quase todas as imagens parecendo iguais, isto não acontece com o Sgr A*. A imagem do buraco negro Sgr A* é uma média das diferentes imagens que a equipe extraiu, finalmente revelando pela primeira vez o gigante que se esconde no centro da nossa Galáxia.

Este trabalho foi possível graças ao esforço conjunto de mais de 300 pesquisadores de cerca de 80 instituições de todo o mundo, que se juntaram na Colaboração EHT. Além de desenvolver ferramentas complexas para superar os desafios da imagem Sgr A*, a equipe trabalhou rigorosamente por cinco anos, usando supercomputadores para combinar e analisar seus dados, enquanto compilava uma biblioteca sem precedentes de buracos negros simulados para comparar com as observações. Os cientistas estão particularmente animados por terem finalmente imagens de dois buracos negros de tamanhos muito diferentes, o que nos oferece a oportunidade de os comparar e contrastar. 

A equipe começou também a utilizar os novos dados para testar teorias e modelos de como é que o gás se comporta em torno de buracos negros supermassivos. Apesar de não ser ainda completamente compreendido, acredita-se que este processo desempenhe um papel crucial na formação e evolução das galáxias. 

Os progressos do EHT continuam: uma grande campanha de observação em março de 2022 incluiu mais telescópios do que nunca. A expansão contínua da rede EHT e atualizações tecnológicas significativas permitirão que os cientistas compartilhem imagens ainda mais impressionantes, bem como filmes de buracos negros em um futuro próximo. 

Esta pesquisa foi apresentada em seis artigos publicados hoje no The Astrophysical Journal Letters.

Fonte: ESO & EHT

quarta-feira, 30 de março de 2022

Mapeado o movimento das anãs brancas na Via Láctea

As anãs brancas foram outrora estrelas normais semelhantes ao Sol, mas que colapsaram depois de esgotarem todo o seu combustível.

© STScI (ilustração de uma anã branca)

Estes remanescentes interestelares têm sido historicamente difíceis de estudar. No entanto, um estudo recente da Universidade de Lund, na Suécia, revela novas informações sobre os padrões de movimento destas estrelas intrigantes.

As anãs brancas têm um raio de cerca de 1% do raio do Sol. Têm aproximadamente a mesma massa, o que significa que têm uma densidade surpreendente de cerca de 1 tonelada por centímetro cúbico. Após milhares de milhões de anos, as anãs brancas arrefecem até um ponto em que deixam de emitir luz visível e transformam-se nas chamadas anãs negras. 

A primeira anã branca descoberta foi 40 Eridani A. É um corpo celeste brilhante a 16,2 anos-luz da Terra, rodeado por um sistema binário composto pela anã branca 40 Eridani B e pela anã vermelha 40 Eridani C. Desde que foi descoberta em 1783 que os astrônomos têm tentado aprender mais sobre as anãs brancas a fim de adquirirem uma compreensão mais profunda da história evolutiva da nossa Galáxia. 

Num estudo, pesquisadores apresentaram novas descobertas sobre a forma como as estrelas colapsadas se movem. "Graças às observações do telescópio espacial Gaia, conseguimos pela primeira vez revelar a distribuição tridimensional da velocidade para o maior catálogo de anãs brancas até à data. Isto dá-nos uma imagem detalhada da sua estrutura de velocidade com detalhes inigualáveis," diz Daniel Mikkola, estudante de doutoramento em astronomia na Universidade de Lund.

O Gaia propiciou aos astrônomos medirem posições e velocidades para cerca de 1,5 bilhões de estrelas. Mas só recentemente foram capazes de se concentrar completamente nas anãs brancas na vizinhança solar.

"Conseguimos mapear as velocidades das anãs brancas e os padrões de movimento. O Gaia revelou que existem duas sequências paralelas de anãs brancas ao olhar para a sua temperatura e brilho. Se as estudarmos separadamente, podemos ver que elas provavelmente se movem de modo diferente, provavelmente como consequência de terem massas e vidas diferentes," diz Mikkola. 

Os resultados podem ser utilizados para desenvolver novas simulações e modelos para continuar mapeando a história e desenvolvimento da Via Láctea. Através de um maior conhecimento das anãs brancas, os pesquisadores esperam ser capazes de esclarecer uma série de dúvidas em torno do nascimento da Via Láctea. 

"Este estudo é importante porque aprendemos mais sobre as regiões mais próximas na nossa Galáxia. Os resultados também são interessantes porque a nossa própria estrela, o Sol, irá um dia transformar-se numa anã branca como 97% de todas as estrelas na Via Láctea," conclui Mikkola.

O estudo publicado no periódico Monthly Notices of the Royal Astronomical Society.

Fonte: Lund University