terça-feira, 17 de maio de 2016

Detritos em expansão de uma explosão estelar

Em 1572, a estrela que explodiu para criar este remanescente de supernova era tão brilhante que até se via de dia.

evolução do remanescente de supernova de Tycho

© Chandra/DSS/VLA (evolução do remanescente de supernova de Tycho)

E apesar de não ter sido a primeira ou a única pessoa a observar este espetáculo estelar, o astrônomo dinamarquês Tycho Brahe escreveu um livro sobre as suas extensas observações do evento, ficando assim o astro com o seu nome.

Nos tempos modernos, os astrônomos têm observado o campo de destroços desta explosão, que é hoje conhecido como remanescente de supernova de Tycho, usando dados do observatório de raios X Chandra da NASA, do VLA (Karl G. Jansky Very Large Array) e muitos outros telescópios. Atualmente, é conhecido que o remanescente de Tycho foi criado pela explosão de uma anã branca, tornando-se parte da chamada classe de supernovas do Tipo Ia, usadas para acompanhar a expansão do Universo.

Dado que grande parte do material arremessado para fora da estrela moribunda foi aquecido por ondas de choque, parecidas com os estrondos sônicos dos aviões supersônicos, passando por ele, o remanescente brilha fortemente em raios X. Agora, foram usadas observações do Chandra de 2000 a 2015 para criar o filme mais longo da evolução de raios X do remanescente Tycho ao longo do tempo, usando cinco imagens diferentes. Esta mostra que a expansão da explosão ainda continua cerca de 450 anos mais tarde, a partir do ponto de vista da Terra a cerca de 10.000 anos-luz de distância.

Combinando dados de raios X com mais ou menos 30 anos de observações no rádio pelo VLA, foi produzido também um filme, usando três imagens diferentes. Foram utilizados estes dados de raios X e rádio para aprender mais sobre esta supernova e sobre o seu remanescente.

  expansão do remanescente de supernova de Tycho

  © NSF/NRAO/VLA (expansão do remanescente de supernova de Tycho)

Os pesquisadores mediram a velocidade da onda de choque em muitos locais diferentes do remanescente. O grande tamanho do remanescente permite a medição deste movimento com uma precisão relativamente elevada. Embora o remanescente seja aproximadamente circular, existem diferenças claras na velocidade da onda de choque em diferentes regiões. A velocidade nas direções inferior e inferior direita é cerca de duas vezes maior do que a velocidade nas direções superior e superior esquerda. Esta diferença já tinha sido vista em observações anteriores.

Esta gama de velocidades no movimento externo da onda de choque é provocada por diferenças na densidade do gás que rodeia o remanescente de supernova. Isto provoca um deslocamento na posição do local da explosão em relação ao centro geométrico, determinado pela localização do centro no remanescente circular. Os astrónomos descobriram que o deslocamento corresponde a cerca de 10% do raio atual do remanescente, para cima e para a esquerda do centro geométrico. A equipe também descobriu que a velocidade máxima da onda de choque é de cerca de 19,3 milhões de quilômetros por hora.

Deslocamentos como este, entre o centro da explosão e o centro geométrico, podem também existir em outros remanescentes de supernova. A compreensão da posição do centro da explosão para as supernovas do Tipo Ia é importante porque limita a região de pesquisa de uma estrela sobrevivente companheira. Qualquer estrela sobrevivente ajudaria a identificar o mecanismo de gatilho da supernova, mostrando que a anã branca puxou material da estrela companheira até atingir uma massa crítica e explodir. A ausência de uma estrela companheira favorece o outro mecanismo de gatilho, em que duas anãs brancas se fundem fazendo com que a massa crítica seja ultrapassada, não deixando nenhuma estrela para trás.

O deslocamento significativo do centro da explosão em relação ao centro geométrico do remanescente é um fenômeno relativamente recente. Para as primeiras centenas de anos do objeto, o choque da explosão foi tão poderoso que a densidade do gás por onde passava não afetava o seu movimento. A discrepância de densidades, do lado esquerdo para o lado direito, aumentou à medida que a onda de choque se deslocava para fora, fazendo com que o deslocamento da posição entre o centro da explosão e o centro geométrico crescesse com o tempo. Por isso, se os astrônomos futuramente fizerem a mesma observação, daqui a 1.000 anos, devem encontrar um deslocamento muito maior.

O artigo que descreve estes resultados foi aceito para publicação na revista The Astrophysical Journal.

Fonte: Harvard-Smithsonian Center for Astrophysics

A nebulosa de Órion no visível e infravermelho

A grande nebulosa em Órion (M42, NGC 1976) é um lugar colorido.

Nebulosa de Órion

© Spitzer/Observatório Siding Spring/Oliver Czernetz (nebulosa de Órion)

Visível a olho nu, ela aparece como uma pequena mancha difusa na constelação de Órion. Em longa exposição, as imagens em vários comprimentos de onda da nebulosa de Órion mostram um local movimentado de estrelas jovens, gás quente e poeira escura. Esta composição digital caracteriza não apenas três cores da luz visível, mas quatro cores da luz infravermelha obtida pelo telescópio espacial Spitzer da NASA. O brilho por trás da nebulosa de Órion (M42) é o Trapézio, um aglomerado estelar aberto de recente formação, devido ao asterismo das suas quatro estrelas principais, que são as mais brilhantes da nebulosa. Muitas das estruturas filamentosas visíveis são na verdade ondas de choque, que se movem com rapidez encontrando com o gás da nebulosa. A nebulosa de Órion se estende por cerca de 40 anos-luz e está localizado a cerca de 1.500 anos-luz de distância no mesmo braço espiral de nossa galáxia.

Fonte: NASA

segunda-feira, 16 de maio de 2016

Nuvens da Nebulosa Carina

Que formas obscuras espreitam as brumas da Nebulosa Carina?

Nebulosa Carina

© John Ebersole (Nebulosa Carina)

As formas sinistras são na realidade nuvens moleculares, nós de gás molecular e poeira tão espessos que se tornaram opacos. No entanto, se comparadas com a atmosfera da Terra, estas nuvens são tipicamente muito menos densas. A imagem acima mostra o núcleo da Nebulosa Carina, uma parte onde as nuvens de gás escuras e coloridas e poeira são particularmente proeminentes. A imagem foi captada no mês passado no observatório Siding Spring na Austrália. Embora a nebulosa é composta predominantemente de gás hidrogênio (em verde), foram atribuídas cores de modo que a luz emitida por vestígios de enxofre e oxigênio aparecem em vermelho e azul, respectivamente. A Nebulosa Carina, catalogada como NGC 3372, se estende por mais de 300 anos-luz e está situada a 7.500 anos-luz de distância na constelação de Carina. Eta Carinae, a estrela mais energética da nebulosa, foi uma das estrelas mais brilhantes no céu na década de 1830, mas depois perdeu o brilho dramaticamente.

Fonte: NASA

sábado, 14 de maio de 2016

Missão Kepler anuncia a maior coleção de planetas já descoberta

A missão Kepler da NASA verificou 1.284 novos planetas, a maior descoberta de planetas até à data.

ilustração das descobertas planetárias realizadas pelo telescópio espacial Kepler

© NASA/W. Stenzel (ilustração das descobertas planetárias realizadas pelo telescópio espacial Kepler)

"Este anúncio mais do que duplica o número de planetas confirmados pelo Kepler," afirma Ellen Stofan, cientista-chefe na sede da NASA em Washington, EUA. "Isto dá-nos esperança de que lá fora, ao redor de uma estrela muito parecida com a nossa, podemos, eventualmente, descobrir outra Terra."

A análise teve por base o catálogo de julho de 2015 composto por candidatos a planeta do telescópio espacial Kepler, que identificou 4.302 potenciais planetas. Para 1.284 dos candidatos, a probabilidade de ser planeta é superior a 99%, o mínimo necessário para receber o estatuto de "planeta". Outros 1.327 candidatos adicionais são provavelmente planetas reais, mas não atingem o patamar dos 99% e necessitam de estudos adicionais. Os restantes 707 são provavelmente outros fenômenos astrofísicos. Esta análise também validou 984 candidatos previamente verificados por outras técnicas.

"Antes do lançamento do telescópio espacial Kepler, nós não sabíamos se os exoplanetas eram raros ou comuns na Galáxia. Graças ao Kepler e à comunidade científica, sabemos agora que podem haver mais planetas do que estrelas," afirma Paul Hertz, diretor da Divisão de Astrofísica na sede da NASA. "Este conhecimento informa as missões futuras que serão necessárias para nos levar cada vez mais perto de descobrir se estamos sozinhos no Universo."

O Kepler captura os sinais discretos de planetas distantes, diminuições de brilho que ocorrem quando os planetas passam em frente, ou transitam, as suas estrelas; tal como o trânsito de Mercúrio pelo Sol ocorrido no último dia 9 de maio. Desde a descoberta dos primeiros planetas para além do nosso Sistema Solar, há mais de duas décadas, que os pesquisadores recorrem a um laborioso processo de verificação de suspeitos planetas.

No entanto, este último anúncio baseia-se num método de análise estatística que pode ser aplicado simultaneamente a muitos candidatos a planeta. Timothy Morton, pesquisador associado da Universidade de Princeton em Nova Jersey, EUA, utilizou uma técnica que atribui a cada candidato a planeta do Kepler uma porcentagem probabilística, o primeiro cálculo automatizado nesta escala, dado que as técnicas estatísticas anteriores se focaram apenas em subgrupos dentro da maior lista de candidatos a planeta identificados pelo Kepler.

"Podemos pensar dos candidatos a planeta como migalhas de pão," afirma Morton. "Se deixamos cair algumas migalhas grandes no chão, podemos apanhá-las uma a uma. Mas se derramamos um saco inteiro de migalhas pequenas, vamos precisar de uma vassoura. Esta análise estatística é a nossa vassoura."

No lote recém-validado de planetas, quase 550 podem ser planetas rochosos como a Terra, tendo por base o seu tamanho. Nove destes orbitam a sua estrela-mãe na zona habitável, o intervalo de distâncias a uma estrela onde os planetas podem ter temperaturas superficiais que permitem a existência de água líquida. Além destes nove, outros 21 exoplanetas já são conhecidos como membros deste grupo exclusivo.

"Eles dizem para não contar com os ovos que ainda estão dentro da galinha, mas é exatamente isto o que estes resultados nos permitem fazer com base nas probabilidades de a galinha pôr os ovos," afirma Natalie Batalha, cientista da missão Kepler no Ames Research Center da NASA em Moffett Field, no estado americano da Califórnia. "Este trabalho vai ajudar o Kepler a alcançar o seu pleno potencial, permitindo uma compreensão mais profunda do número de estrelas que abrigam planetas potencialmente habitáveis, planetas do tamanho da Terra, um número que é necessário para projetar missões futuras em busca de ambientes habitáveis e mundos com vida."

Dos cerca de 5.000 candidatos a planeta encontrados até à data, mais de 3.200 foram agora verificados e 2.325 foram descobertos pelo Kepler. Lançada em março de 2009, a missão Kepler é a primeira missão da NASA a encontrar planetas potencialmente habitáveis do tamanho da Terra. Durante quatro anos, o Kepler monitorou 150.000 estrelas numa única zona do céu, medindo as diminuições reveladoras no brilho estelar que podem ser produzidas por um planeta em trânsito. Em 2018, o TESS (Transiting Exoplanet Survey Satellite) da NASA irá usar o mesmo método para estudar 200.000 estrelas próximas brilhantes à procura de planetas, com foco nas super-Terras e em exoplanetas do tamanho da Terra.

Um artigo científico sobre a coleção de planetas foi publicado na revista The Astrophysical Journal.

Fonte: Ames Research Center

sexta-feira, 13 de maio de 2016

Estrela tem quatro mini-Netunos em ressonância orbital

Um sistema com quatro planetas, observado há vários anos atrás pelo telescópio Kepler, é verdadeiramente raro: os planetas, todos mini-Netunos situados perto da estrela, orbitam numa ressonância única bloqueada há bilhões de anos.

ressonância orbital dos quatro mini-Neptunos

© W. Rebel/Wikimedia Commons (ressonância orbital dos quatro mini-Neptunos)

A cada três órbitas do planeta mais exterior, o segundo orbita quatro vezes, o terceiro seis vezes e o mais interior oito vezes.

Estas ressonâncias orbitais não são incomuns, o nosso próprio planeta anão, Plutão, orbita o Sol duas vezes durante o mesmo período que Netuno leva para completar três órbitas, mas uma ressonância entre quatro planetas não é muito comum.

Astrônomos da Universidade de Chicago e da Universidade da Califórnia, Berkeley, estão particularmente interessados neste sistema estelar porque pensa-se que os quatro planetas gigantes do nosso Sistema Solar - Júpiter, Saturno, Urano e Netuno - já tiveram órbitas ressonantes que foram perturbadas em algum lugar durante a sua história de 4,5 bilhões de anos.

De acordo com Howard Isaacson, astrônomo de Berkeley, o sistema Kepler-223 pode ajudar-nos a entender como o nosso Sistema Solar e outros sistemas estelares descobertos nas últimas décadas se formaram. Em particular, pode ajudar a resolver se os planetas ficam no mesmo lugar em que se formam ou se se movem para mais perto ou mais longe da estrela ao longo do tempo.

"Basicamente, este sistema é tão peculiar no modo em que está bloqueado em ressonâncias que sugere fortemente que a migração é o método pelo qual os planetas se formam, isto é, migrando para o interior depois de se formarem mais longe," afirma.

A missão Kepler da NASA revelou muitos cenários alternativos para a forma como os planetas se formam e migram num sistema planetário diferente do nosso.

"Antes de descobrirmos exoplanetas, pensávamos que cada sistema se formava como o nosso," explica Isaacson. "Graças ao Kepler, temos agora Júpiteres quentes, muitos planetas que estão mais perto da sua estrela que Mercúrio ou com um tamanho entre a Terra e Netuno.

Isaacson obteve um espectro de Kepler-223 em 2012 usando o espectrômetro HIRES (High-Resolution Echelle Spectrometer) acoplado ao telescópio Keck-1 de 10 metros situado no topo de Mauna Kea, Havaí. O espectro revelou uma estrela muito semelhante em tamanho e massa com o Sol, mas mais antiga, com mais de 6 bilhões de anos.

"Nós precisamos de saber o tamanho exato da estrela para fazer a análise dinâmica e de estabilidade, que envolve estimativas da massa dos planetas," comenta.

Sean Mills, estudante graduado da Universidade de Chicago, e seus colaboradores, usaram em seguida dados de brilho do telescópio Kepler para analisar como os quatro planetas bloqueiam a luz estelar e mudam as órbitas uns dos outros, inferindo assim os tamanhos e massas dos planetas. A equipe realizou simulações numéricas de migração planetária que poderia ter gerado a arquitetura atual do sistema.

"Exatamente como e onde se formam planetas é uma questão importante na ciência planetária," comenta Mills. "O nosso trabalho testa essencialmente um modelo de formação planetária para um tipo de planeta que não temos no nosso Sistema Solar." A ressonância pode ter sido criada em apenas 100.000 anos, à medida que cada planeta migrava para suficientemente perto dos outros para ser capturado. Os astrônomos suspeitam da existência de circunstâncias especiais que permitiram com que a ressonância persistisse por 6 milhões de anos.

"Estas ressonâncias são extremamente frágeis," afirma Daniel Fabricky da Universidade de Chicago. "Se corpos estavam voando ao redor e batendo uns nos outros, então teriam desalojado os planetas dessa ressonância."

Os cientistas suspeitam que os planetas gigantes do nosso Sistema Solar podem ter saído de ressonâncias parecidas com a de Kepler-223, possivelmente depois de interagir com inúmeros asteroides e planetas pequenos ou planetesimais. Outros processos, incluindo forças de maré que flexionam os planetas, também podem provocar a separação de ressonâncias.

"Muitos dos sistemas multiplanetários podem começar com uma cadeia de ressonâncias como esta, apesar de frágeis, o que significa que estas correntes normalmente se partem em longas escalas de tempo parecidas com aquelas inferidas para o Sistema Solar," conclui Fabrycky.

A descoberta foi relatada na edição online de 11 de maio da revista Nature.

Fonte: Universidade de Chicago e Universidade da Califórnia

Jatos de Encélado: surpresas na luz de uma estrela

Durante uma recente sessão de observação, a sonda Cassini da NASA viu uma estrela brilhante passando por trás da pluma de gás e poeira expelida da lua gelada de Saturno, Encélado.

  pluma em Encélado

© NASA/JPL-Caltech (pluma em Encélado)

A atração gravitacional de Saturno muda a quantidade de partículas expelidas a partir do polo sul da lua Encélado em diferentes pontos da sua órbita. Mais partículas tornam a pluma mais brilhante na imagem infravermelha à esquerda.

A observação conduziu a uma nova pista surpreendente sobre a incrível atividade geológica de Encélado: parece que pelo menos alguns dos jatos estreitos libertados a partir da superfície da lua são expelidos com mais fúria quando esta está mais longe de Saturno.

Exatamente como ou porque é que isto acontece está ainda longe de se saber com certeza, mas a observação fornece aos teóricos novas possibilidades para refletir sobre as voltas e reviravoltas da "canalização" que existe por baixo da superfície gelada da lua. Os cientistas estão ansiosos por descobrir tais pistas porque, por baixo da concha gelada de gelo, Encélado é um mundo oceânico que poderá abrigar ingredientes propícios à vida.

Durante os seus primeiros anos depois de chegar a Saturno em 2004, a Cassini descobriu que Encélado "vomita" continuamente uma grande pluma de gás e grãos de gelo a partir da região em torno do seu polo sul. Esta pluma estende-se por várias centenas de quilômetros para o espaço e tem várias vezes a largura da própria lua. Dezenas de jatos estreitos irrompem da superfície ao longo de grandes fraturas conhecidas como "listras de tigre" e contribuem para a pluma. A atividade é originária do oceano de água líquida e salgada por baixo da superfície, que está saindo para o espaço.

A Cassini mostrou que mais de 90% do material na pluma é vapor de água. Este gás empurra grãos de poeira para o espaço, onde a luz solar os espalha, tornando-os visíveis às câmaras da sonda. A Cassini até recolheu algumas destas partículas expelidas de Encélado e analisou a sua composição.

Observações anteriores da Cassini mostraram que as erupções pulverizavam três vezes mais poeira gelada para o espaço quando Encélado estava no seu ponto mais distante da órbita elíptica em torno de Saturno. Mas, até agora, os cientistas não tinham tido oportunidade de ver se a parte gasosa das erupções, que constitui a maioria da massa da pluma, também aumentava neste ponto.

Por isso, no dia 11 de março de 2016, durante uma sessão de observação cuidadosamente planejada, a Cassini focou-se na estrela Epsilon Orionis, a estrela central do Cinturão de Órion. Na hora marcada, a pluma de Encélado passou em frente da estrela. O instrumento UVIS, o espectrômetro ultravioleta de imagem da Cassini, mediu o modo como o vapor de água na pluma enfraqueceu a luz ultravioleta da estrela, revelando a quantidade de gás contida na pluma. Considerando que uma quantidade adicional de poeira aparece neste ponto orbital da lua, os cientistas esperavam medir muito mais gás na pluma, empurrando a poeira para o espaço.

Mas em vez do enorme aumento esperado na produção de vapor de água, o instrumento apenas viu um aumento ligeiro, na ordem dos 20% no valor total de gás.

Candy Hansen, cientista da Cassini, começou logo a tentar descobrir o que se passava. Hansen, que faz parte da equipe científica do UVIS no Instituto de Ciência Planetária em Tucson, Arizona, EUA, liderou o planejamento da observação. "Nós seguimos primeiro a explicação mais óbvia, mas os dados disseram-nos que era necessário um olhar mais profundo," comenta.

Hansen e colegas focaram-se num jato conhecido informalmente como "Baghdad I". Os pesquisadores descobriram que, ao passo que a quantidade de gás na pluma geral não muda muito, este jato em particular era quatro vezes mais ativo do que em outros momentos na órbita de Encélado. Em vez de fornecer apenas 2% do vapor de água total da pluma, tal como a Cassini tinha observado anteriormente, fornecia agora 8% do gás da pluma.

Segundo Larry Esposito, líder da equipe UVIS na Universidade do Colorado em Boulder, EUA, esta informação revelou algo sutil, mas importante. "Nós pensávamos que a quantidade de vapor de água na pluma em geral, em toda a área polar sul, era fortemente afetada pelas forças de maré de Saturno. Ao invés, descobrimos que o que muda são os jatos de pequena escala". Este aumento na atividade dos jatos é o que faz com que existam mais grãos de água gelada, onde as câmaras da Cassini os podem ver.

As novas observações fornecem restrições úteis sobre o que poderá estar acontecendo com a "canalização" subterrânea, fendas e fissuras através das quais a água do oceano subsuperficial potencialmente habitável da lua está fazendo o seu caminho para o espaço.

Com os novos dados da Cassini, Hansen está pronta para passar a vez aos teóricos. "Dado que nós só conseguimos ver o que está acima da superfície, cabe aos modeladores através dos dados descobrir o que está a acontecendo no subsolo."

Fonte: Jet Propulsion Laboratory

Hidra, a lua gelada de Plutão

A sonda New Horizons da NASA enviou os primeiros dados de composição de quatro dos satélites de Plutão. Os novos dados mostram que a superfície de Hidra, a lua mais exterior de Plutão, é dominada por água gelada quase pura, confirmando indícios que os cientistas descobriram em imagens da New Horizons que mostravam a superfície altamente refletiva de Hidra.

Hidra

© NASA/JHUAPL/SwRI (Hidra)

Os novos dados de composição, recentemente recebidos na Terra, foram recolhidos pelo instrumento LEISA (Ralph/Linear Etalon Imaging Spectral Array) no dia 14 de julho de 2015, a uma distância de 240.000 quilômetros.

O espectro infravermelho mostra a assinatura inconfundível de água gelada cristalina: uma absorção ampla entre os 1,50 e os 1,60 micrômetros e uma característica espectral mais estreita de gelo a 1,65 micrômetros. O espectro de Hidra é parecido com o da maior lua de Plutão, Caronte, que é também dominada por água gelada cristalina. Mas as bandas de absorção do gelo de Hidra são ainda mais profundas do que as de Caronte, sugerindo que os grãos de gelo à superfície de Hidra ou são maiores ou refletem ainda mais luz em determinados ângulos do que os grãos em Caronte. Pensa-se que Hidra tenha sido formada num disco de detritos gelados, produzido quando os mantos ricos em água foram removidos dos dois corpos que colidiram para formar o binário Plutão-Caronte há cerca de 4 bilhões de anos atrás. As profundas bandas da água e a alta reflectância implicam relativamente pouca contaminação por material mais escuro que se acumulou à superfície de Caronte com o passar do tempo.

Os cientistas da missão estão pesquisndo porque é que o gelo de Hidra parece ser mais limpo do que o de Caronte. "Talvez impactos de micrometeoritos refresquem continuamente a superfície de Hidra," afirma Simon Porter, membro da equipe científica da New Horizons e do SwRI (Southwest Research Institute) em Boulder, no estado americano do Colorado. "Este processo pode ser ineficaz na muito maior lua Caronte, cuja gravidade retém todos os detritos criados por esses impactos."

A equipe científica da New Horizons está ansiosa para a obtenção de espectros semelhantes de outras pequenas luas de Plutão, para comparação com a Hidra e Caronte.

Fonte: NASA

Um atropelamento cósmico

A imagem abaixo mostra a galáxia em anel da Vela, visível como um núcleo brilhante rodeado por um halo azul.

galáxia em anel da Vela

© ESO/Jean-Christophe Lambry (galáxia em anel da Vela)

Como o nome sugere, esta galáxia em anel, situada na constelação austral da Vela, é notável devido ao seu núcleo compacto e ao grande cinto circular de gás e estrelas que o rodeia.
Pensa-se que as galáxias em anel são formadas quando galáxias maiores são penetradas por um agressor galático menor que, ao passar pelo coração da sua vítima, desencadeia uma onda de choque que se propaga para o exterior. Esta onda empurra o gás para a periferia da galáxia, onde este começa a colapsar, formando novas estrelas. A galáxia em anel da Vela é incomum no sentido em que exibe pelo menos dois anéis, sugerindo que a colisão não aconteceu recentemente.
Esta fotografia também mostra a galáxia conhecida por ESO 316-33, a qual pode ser observada acima e à esquerda da galáxia em anel da Vela, assim como a estrela brilhante HD 88170.

Fonte: ESO

quinta-feira, 12 de maio de 2016

A galáxia Seyfert NGC 6814

As galáxias espirais juntamente com as galáxias irregulares compõem cerca de 60% das galáxias no Universo local. No entanto, apesar de sua prevalência, cada galáxia espiral é única, como flocos de neve, não há dois iguais.

NGC 6814

© Hubble (NGC 6814)

Isto é demonstrado pela impressionante galáxia espiral NGC 6814, vista na imagem acima, situada a 74,4 milhões de anos-luz na direção da constelação da Águia. Esta imagem da NGC 6814 foi feita a partir de exposições separadas tomadas nas regiões visível e infravermelho do espectro com a Wide Field Camera 3 (WFC3), instalada no telescópio espacial Hubble.

O núcleo da NGC 6814, também conhecida como LEDA 63545 ou 2MASX J19424057-1019255, é extremamente brilhante, um sinal revelador de que a galáxia é uma galáxia Seyfert. No século passado, o astrônomo americano Carl Keenan Seyfert observou que a NGC 6814 apresentava linhas espectrais de emissão (indicando a presença de nuvens de gás muito quente) muito largas (indicando que as nuvens se deslocavam a grande velocidade). Observações subsequentes mostraram que o núcleo da NGC 6814 emitia grande quantidade de raios ultravioleta e raios X, um sinal inequívoco da presença de um objeto altamente energético, ou seja,  um quasar.

A NGC 6814 mostra um comportamento periódico muito estável na forma de erupções repetidas de raios X, fazendo com que provavelmente ela hospede um buraco negro supermassivo com uma massa de 18 milhões de massas solares.

Como NGC 6814 é uma galáxia muito ativa, muitas regiões com gás ionizado estão presentes ao longo de seus braços espirais. Nessas grandes nuvens de gás, uma explosão de formação estelar ocorreu recentemente, forjando as estrelas azuis brilhantes que são visíveis espalhadas por toda a galáxia.

Fonte: Astronomy Now

segunda-feira, 9 de maio de 2016

A exclusiva interação de Plutão com o vento solar

No que se refere ao modo como interage com o vento solar (o fluxo contínuo de partículas carregadas do Sol), Plutão comporta-se menos do que o esperado como um cometa e mais como um planeta como Marte ou Vênus.

  Plutão

  © NASA (Plutão)

Usando dados do instrumento SWAP (Solar Wind Around Pluto) a bordo da New Horizons durante o voo rasante de julho de 2015, os cientistas observaram pela primeira vez material saindo da atmosfera de Plutão e estudaram como interage com o vento solar, levando a mais uma surpresa de Plutão.

"Este é um tipo de interação que nunca tínhamos visto antes em qualquer lugar do nosso Sistema Solar," afirma David J. McComas, autor principal do estudo. McComas é professor de ciências astrofísicas na Universidade de Princeton e vice-presidente do Laboratório de Física de Plasmas de Princeton.

Os astrofísicos dizem que têm agora um tesouro de informações sobre o modo como a atmosfera de Plutão interage com o vento solar. O vento solar é o plasma libertado pelo Sol e viaja a 160 milhões de quilômetros por hora, banhando planetas, asteroides, cometas e o espaço interplanetário numa sopa constituída principalmente por prótons e elétrons.

Anteriormente, a maioria dos pesquisadores pensava que Plutão era caracterizado mais como um cometa, que tem uma grande região onde o vento solar desacelera suavemente, em oposição ao desvio abrupto que o vento solar encontra num planeta como Marte ou Vênus. Em vez disso, Plutão é um híbrido.

"Estes resultados salientam o poder da exploração. Mais uma vez, fomos a um novo tipo de lugar e descobrimos inteiramente novos tipos de expressão na natureza," afirma o pesquisador Alan Stern do SwRI (Southwest Research Institute) em San Antonio, no estado americano do Texas.

Considerando que está tão longe do Sol, média de 5,9 bilhões de quilômetros, e é tão pequeno, os cientistas pensavam que a gravidade de Plutão não era forte o suficiente para manter os íons pesados na sua atmosfera estendida. Mas, "a gravidade de Plutão é claramente suficiente para manter material relativamente confinado," afirma McComas.

Usando o instrumento SWAP, foi possível separar os íons pesados do metano, o principal gás que escapa da atmosfera de Plutão, dos íons leves de hidrogênio que vêm do Sol.

Entre as descobertas adicionais de Plutão:

  • Tal como a Terra, Plutão tem uma longa cauda de íons, que se estende na direção do vento a pelo menos uma distância de aproximadamente 100 raios de Plutão (118.700 km, quase três vezes a circunferência da Terra), carregada com íons pesados da atmosfera e com uma "estrutura considerável";
  • A obstrução do vento solar por Plutão, na direção oposta à do vento, é mais pequena do que se pensava. O vento solar só é bloqueado a cerca de dois raios de Plutão (3.000 km);
  • Plutão tem um limite muito fino na sua cauda de íons pesados e no revestimento do vento solar que aí choca e que constitui um obstáculo ao seu fluxo.

Heather Elliott, astrofísica do SwRI, explica: "a comparação da interação entre o vento solar e Plutão e a interação do vento solar com os outros planetas e corpos é interessante porque as condições físicas são diferentes para cada um, e os processos físicos dominantes dependem dessas condições."

Estas descobertas fornecem pistas sobre os plasmas magnetizados que se poderão encontrar em torno de outras estrelas. "A gama de interação com o vento solar é bastante diversificada, e isso dá-nos alguma comparação para nos ajudar a melhor compreender as ligações no nosso Sistema Solar e além,"comenta McComas.

Este estudo foi publicado no periódico Journal of Geophysical Research.

Fonte: Princeton University

Planeta Nove: Um mundo que não devia existir

No início deste ano os cientistas divulgaram evidências teóricas para um nono planeta no Sistema Solar, um planeta com a massa de Netuno numa órbita altamente elíptica com 10 vezes a distância entre Plutão e o Sol.

Planeta Nove

© Caltech/R. Hurt (Planeta Nove)

Desde então, os teóricos têm estudado como é que este Planeta Nove pode ter assentado numa órbita tão distante.

Uma nova análise efetuada por astrônomos do Harvard-Smithsonian Center for Astrophysics (CfA) que examinaram uma série de cenários e descobriram que a maioria destes têm baixa probabilidade. Portanto, a presença do Planeta Nove continua sendo um pouco misteriosa.

"As evidências apontam para a existência do Planeta Nove, mas não conseguimos explicar, com certeza, como é que foi formado," afirma Gongjie Li, astrônoma do CfA.

O Planeta Nove orbita o nosso Sol a uma distância muito excêntrica entre 400 a 1.500 UA (Unidade Astronômica, é a distância média entre a Terra e o Sol, cerca de 150 milhões de quilômetros). Isto coloca-o muito além de todos os planetas do nosso Sistema Solar. A questão torna-se: será que se formou aí, ou será que se formou noutro lugar e mais tarde vagueou para a sua órbita invulgar?

Li e Fred Adams (Universidade de Michigan) realizaram milhões de simulações de computador a fim de considerar três possibilidades. A primeira e mais provável envolve a passagem de uma estrela que puxa o Planeta Nove para fora. Este tipo de interação não só desloca o planeta para uma órbita mais larga, mas também torna essa órbita mais elíptica. E dado que o Sol se formou num aglomerado com vários milhares de vizinhos, estes encontros estelares eram mais comuns no início da história do nosso Sistema Solar.

No entanto, é mais provável que a passagem de uma estrela expulsasse completamente o Planeta Nove do Sistema Solar. Li e Adams calcularam uma probabilidade de 10%, na melhor das hipóteses, para que o Planeta Nove "pousasse" na sua órbita atual. Além disso, o planeta também teria de formar-se a grandes distâncias.

O astrônomo Scott Kenyon, também do CfA, acredita que pode ter a solução para esta dificuldade. Em dois artigos submetidos à revista The Astrophysical Journal, Kenyon e Benjamin Bromley (Universidade do Utah) usaram simulações para construir cenários plausíveis para a formação do Planeta Nove numa órbita tão larga.

"A solução mais simples é o Sistema Solar formar um gigante gasoso extra," afirma Kenyon.

Eles propõem que o Planeta Nove se formou muito mais perto do Sol e, mais tarde, interagiu com os outros gigantes gasosos, principalmente Júpiter e Saturno. Uma série de impulsos gravitacionais pode, em seguida, ter deslocado o planeta para uma órbita maior e mais elíptica ao longo do tempo.

Kenyon e Bromley também examinaram a possibilidade do Planeta Nove se ter formado, para começar, a grandes distâncias. Eles acham que uma combinação ideal de massa e vida útil do disco inicial poderia, potencialmente, criar o Planeta Nove no tempo que demoraria para ser empurrado pela passagem da estrela que Li estudou.

"A vantagem destes cenários é que são testáveis observacionalmente," salienta Kenyon. "Um gigante gasoso empurrado vai parecer-se com um frio Netuno, enquanto um planeta formado nesse local vai ser parecido com um Plutão gigante e sem gás."

O trabalho de Li também ajuda a restringir a data de formação ou migração do Planeta Nove. O Sol nasceu num aglomerado onde os encontros com outras estrelas eram mais frequentes. A órbita alongada do Planeta Nove iria deixá-lo vulnerável a expulsão durante tais encontros. Portanto, o Planeta Nove é provavelmente um retardatário que alcançou a sua órbita atual depois do Sol ter saído do aglomerado onde nasceu.

Finalmente, Li e Adams estudaram outras duas possibilidades mais radicais: que o Planeta Nove é um exoplaneta que foi capturado a partir de um sistema estelar de passagem, ou um planeta que flutuava livremente e que foi capturado quando passou demasiado perto do nosso Sistema Solar. No entanto, eles concluem que as probabilidades destes cenários são inferiores a 2%.

Um artigo foi aceito para publicação na revista The Astrophysical Journal Letters.

Fonte: Harvard-Smithsonian Center for Astrophysics

sábado, 7 de maio de 2016

O trânsito de Mercúrio

Na próxima segunda-feira, 9 de maio de 2016, o planeta Mercúrio irá cruzar a face do Sol para os observadores aqui do planeta Terra.

trânsito de Mercúrio

© Dominique Dierick (trânsito de Mercúrio)

A sequência composta de fotos na imagem em destaque, superpostas em um único quadro, mostra o evento do trânsito de Mercúrio integral ocorrido em 7 de maio de 2003. Mercúrio cruzou o Sol por um período de mais de 5 horas, assim, as 23 imagens empilhadas foram capturadas em intervalos de cerca de 15 minutos. O polo norte do Sol, a órbita da Terra e a órbita de Mercúrio, embora diferentes, todas ocorrem em direções ligeiramente acima da parte superior da imagem. Perto do centro do quadro e na borda inferior do Sol são visíveis manchas solares.

Esse notável e raro fenômeno é chamado de trânsito de Mercúrio e a última vez que ocorreu foi em 2006. Uma vez que o plano orbital de Mercúrio não é exatamente coincidente com o plano da órbita terrestre, Mercúrio usualmente parece passar sobre ou sob o Sol nos céus.

Os trânsitos de Mercúrio com relação à Terra são muito mais frequentes que os trânsitos de Vênus, ocorrendo cerca de 13 ou 14 vezes a cada século, sempre nos meses de maio ou novembro. Uma das razões para esta frequência maior é o fato que o período da órbita de Mercúrio é mais curta que o de Vênus.

O trânsito de Mercúrio no dia 9 de maio será total na América do Sul (Brasil), no leste da América do Norte e na Europa Ocidental; um trânsito parcial de Mercúrio poderá ser observado em todo resto do mundo, exceto na Austrália e Ásia Oriental.

O trânsito de Mercúrio começará às 8:12 hs, horário de Brasília. Após 7 horas cruzando o disco solar, Mercúrio sai do trânsito às 15:42 hs, horário de Brasília, com o Sol começando a baixar no horizonte oeste. Mercúrio estará a 83 milhões de km da Terra.

Depois deste trânsito de Mercúrio, o próximo trânsito está previsto para ocorrer em 11 de novembro de 2019.

Fonte: NASA

segunda-feira, 2 de maio de 2016

Três mundos potencialmente habitáveis em torno de uma estrela anã fria

Astrônomos utilizaram o telescópio TRAPPIST instalado no Observatório La Silla do ESO para descobrir três planetas em órbita de uma estrela anã muito fria situada a apenas 40 anos-luz da Terra.

ilustração da estrela anã vista de muito perto de um dos seus planetas

© ESO/M. Kornmesser (ilustração da estrela anã vista de muito perto de um dos seus planetas)

Estes mundos têm tamanhos e temperaturas semelhantes às de Vênus e da Terra e são os melhores alvos descobertos até hoje para procurar vida fora do Sistema Solar. Estes são os primeiros planetas descobertos em torno de uma estrela extremamente fraca e pequena.

Uma equipe de astrônomos liderada por Michaël Gillon do Institut d´Astrophysique et Géophysique da Universidade de Liège, na Bélgica, utilizou o telescópio TRAPPIST para observar a estrela 2MASS J23062928-0502285, agora conhecida por TRAPPIST-1. A equipe constatou que esta estrela fria e tênue diminuía ligeiramente de brilho a intervalos regulares, indicando que vários objetos estavam passando entre a estrela e a Terra. Uma análise detalhada mostrou a existência de três planetas com tamanhos semelhantes ao da Terra.
TRAPPIST-1 é uma estrela anã muito fria, com cerca de 0,05% da luminosidade do Sol e uma massa de cerca de 8% da massa solar, é muito mais fria e vermelha que o Sol e pouco maior que Júpiter. Tais estrelas são bastante comuns na Via Láctea e vivem durante muito tempo, mas esta é a primeira vez que se descobriram planetas em torno de uma delas. Apesar de se encontrar bastante próxima da Terra, esta estrela é muito fraca e avermelhada para poder ser observada a olho nu ou mesmo através de um telescópio amador grande. Situa-se na constelação de Aquário.
Emmanuël Jehin, co-autor do novo estudo, está muito entusiasmado: “Esta é realmente uma mudança de paradigma relativamente à população de planetas e ao caminho a ser seguido no sentido de encontrar vida no Universo. Até agora, a existência de tais “mundos vermelhos” em órbita de estrelas anãs muito frias era puramente teórica, mas nós descobrimos não apenas um único planeta isolado em torno de uma estrela vermelha fraca, mas um sistema completo de três planetas!”
Michaël Gillon, autor principal do artigo que descreve estes resultados, explica o significado da nova descoberta: “Porque é que estamos tentando detectar planetas do tipo da Terra em torno das estrelas pequenas e frias da vizinhança solar? A razão é simples: os sistemas em torno destas estrelas minúsculas são os únicos locais onde conseguimos detectar vida num exoplaneta do tipo terrestre com a atual tecnologia. Por isso, se quisermos encontrar vida em outros lugares do Universo, é aqui que devemos começar a procurar.”
Os astrônomos irão procurar sinais de vida ao estudar o efeito que a atmosfera de um planeta em trânsito tem na luz que chega à Terra. Para planetas do tamanho da Terra em órbita da maioria das estrelas, este efeito desaparece no enorme brilho da estrela. Apenas no caso de estrelas vermelhas fracas e muito frias, como TRAPPIST-1, é que este efeito é suficientemente grande para poder ser detectado.
Observações posteriores feitas com telescópios maiores, incluindo com o instrumento HAWK-1 montado no Very Large Telescope (VLT) de 8 metros do ESO, no Chile, mostraram que os planetas que orbitam a estrela TRAPPIST-1 têm tamanhos muito semelhantes ao da Terra. Dois dos planetas têm períodos orbitais de cerca de 1,5 dias e 2,4 dias respectivamente, e o terceiro planeta tem um período menos bem determinado que pode ir de 4,5 a 7,3 dias.
“Com períodos orbitais curtos, os planetas encontram-se entre 20 a 100 vezes mais próximos da sua estrela do que a Terra se encontra do Sol. A estrutura deste sistema planetário é muito mais semelhante em escala ao sistema das luas de Júpiter do que ao Sistema Solar,” explica Michaël Gillon.
Embora orbitem muito próximos da sua estrela anã hospedeira, os dois planetas internos recebem apenas quatro e duas vezes, respectivamente, a quantidade de radiação que a Terra recebe do Sol, uma vez que a sua estrela é muito menos luminosa que o nosso Sol. Este fato coloca-os mais próximo da estrela do que a zona de habitabilidade para este sistema, embora seja no entanto possível que possuam regiões habitáveis nas suas superfícies. A órbita do terceiro planeta, o mais externo, não é ainda bem conhecida, mas provavelmente receberá menos radiação do que a Terra, embora talvez ainda a suficiente para se encontrar na zona de habitabilidade do sistema.
“Graças a vários grandes telescópios atualmente em construção, incluindo o E-ELT do ESO e o Telescópio Espacial James Webb da NASA/ESA/CSA, com lançamento previsto para 2018, logo poderemos estudar a composição atmosférica destes planetas e ver primeiro se possuem água e depois se apresentam traços de atividade biológica. Trata-se de um enorme passo em frente na procura de vida no Universo,” conclui Julien de Wit, do Massachusetts Institute of Technology (MIT) nos EUA, um dos co-autores do trabalho.
Este trabalho abre novas janelas na procura de exoplanetas, já que cerca de 15% das estrelas próximo do Sol são estrelas anãs muito frias, e serve igualmente para destacar o fato de que a procura de exoplanetas entrou agora no reino dos “primos” da Terra potencialmente habitáveis. O rastreio TRAPPIST é um protótipo de um projeto muito mais ambicioso chamado SPECULOOS, que será instalado no Observatório Paranal do ESO.

Este trabalho foi descrito no artigo científico intitulado “Temperate Earth-sized planets transiting a nearby ultracool dwarf star”, de M. Gillon et al., que foi publicado hoje na revista Nature.

Fonte: ESO

domingo, 1 de maio de 2016

Fortes ventos oriundos de misteriosas fontes binárias de raios X

No comprimento de onda dos raios X, pode-se dizer que o céu é dominado por dois tipos de objetos astronômicos: buracos negros supermassivos, localizados no centro de grandes galáxias, ferozmente devorando o material ao redor; e sistemas binários, consistindo de um remanescente estelar, uma anã branca, uma estrela de nêutrons ou um buraco negro, se abastecendo de gás de sua companheira.

ilustração de ventos rápidos emanados do binário de raios X

© ESA/C. Carreau (ilustração de ventos rápidos emanados do binário de raios X)

Em ambos os casos, o gás forma um disco espiralado em torno do objeto compacto e muito denso: o atrito no disco, faz com que o gás aqueça e emita luz em muitos comprimentos de onda, com um pico nos raios X.

Contudo, nem todo o gás é engolido pelo objeto central, e parte dele pode ser empurrado para longe por poderosos ventos e jatos.

“Algumas dessas fontes podem abrigar estrelas de nêutrons altamente magnetizadas, enquanto outras podem possuir buracos negros de massa intermediária de cerca de 1.000 vezes a massa do Sol. Mas na maioria dos casos, a razão para o comportamento extremo dessas fontes não é totalmente claro,” explica Ciro Pinto do Institute of Astronomy em Cambridge, Inglaterra.

Ciro e seus colegas vasculharam os arquivos do XMM-Newton e coletaram alguns dias de observações de três fontes ultra luminosas de raios X, todas elas em galáxias próximas localizadas a menos de 22 milhões de anos-luz de distância da Terra.

Os dados foram obtidos durante alguns anos de observações feitas com o Reflection Grating Spectrometer, um instrumento altamente sensível que permite registar aspectos muitos sutis no espectro de raios X de suas fontes.

Nas três fontes, os cientistas foram capazes de identificar a emissão de raios X do gás em porções externas do disco ao redor do objeto compacto central, fluindo vagarosamente para longe dele.

NGC 1313

© Hubble (NGC 1313)

Mas em duas das três fontes, conhecidas como NGC 1313 X-1 e NGC 5408 X-1, foi possível ver claramente sinais de raios X sendo absorvidos pelo gás que é expelido da fonte central a uma velocidade extrema de 70.000 km/s, ou seja, um quarto da velocidade da luz.

NGC 5408

© Hubble (NGC 5408)

Existe um limite teórico de quanta matéria pode ser acrescida por um objeto de uma determinada massa, denominado Limite de Eddington. Esse limite foi calculado pela primeira vez para estrelas pelo astrônomo britânico Arthur Stanley Eddington, mas ele também pode ser aplicado a objetos compactos como os buracos negros e as estrelas de nêutrons. O Limite de Eddington representa a maior luminosidade que uma estrela pode ter e ainda estar em equilíbrio hidrostático. Em estrelas de altíssima massa a pressão de radiação domina. O limite nesse sentido é que a pressão da radiação não pode ser maior do que a gravidade local; caso for maior não haverá equilíbrio hidrostático, causando perda de massa. O cálculo de Eddington se refere a um caso ideal onde tanto a matéria está sendo acrescida no objeto central como a radiação está sendo emitida por ele igualmente em todas as direções.

Mas as fontes estudadas por Ciro e seus colegas estão sendo alimentadas através de um disco de acreção que está provavelmente sendo inchado pela pressão interna do gás fluindo a grande velocidade em direção ao objeto central.

A natureza dos objetos compactos abrigados no centro das fontes observadas nesse estudo é ainda incerta, embora os cientistas suspeitam que possam ser buracos negros de massa estelar, com massas de algumas dezenas de vezes a massa do Sol.

A equipe está investigando mais dados de arquivos do XMM-Newton, buscando por mais fontes desse tipo e estão também planejando futuras observações em raios X, bem como nos comprimentos de onda do óptico e das ondas de rádio.

“Com mais amostras de fontes e com observações em múltiplos comprimentos de onda, nós esperamos finalmente descobrir a natureza física desses poderosos e peculiares objetos”, concluiu Ciro.

Fonte: ESA

Hubble vê galáxia se escondendo no céu noturno

Esta imagem impressionante do telescópio espacial Hubble capta a galáxia UGC 477, localizada a mais de 110 milhões de anos-luz de distância na constelação de Peixes.

UGC 477

© Hubble (UGC 477)

A UGC 477 é uma galáxia de brilho superficial baixo (LSB). Proposto pela primeira vez em 1976 por Mike Disney, a existência de galáxias LSB foi confirmada apenas em 1986 com a descoberta de Malin 1. As galáxias LSB como a UGC 477 são mais difusamente distribuídas do que as galáxias de Andrômeda e a Via Láctea. Com brilhos de superfície até 250 vezes mais fracas do que o céu noturno, estas galáxias podem ser muito difíceis de serem detectadas.

A maior parte da matéria presente nas galáxias LSB está na forma de hidrogênio gasoso, em vez de estrelas. Ao contrário das protuberâncias de galáxias espirais normais, os centros das galáxias LSB não contêm um grande número de estrelas. Os astrônomos suspeitam que isso é porque as galáxias LSB são encontradas principalmente em regiões desprovidas de outras galáxias, e, portanto, têm experimentado menos interações galácticas e fusões capazes de desencadear altas taxas de formação de estrelas.

As galáxias LSB como a UGC 477 parece serem dominadas pela matéria escura, tornando-as excelentes objetos para serem estudados e propiciar nossa compreensão desta substância indescritível. No entanto, devido a uma baixas representação nas inspeções galácticas, causada por sua baixa luminosidade característica, a sua importância só foi reconhecida há relativamente pouco tempo.

Fonte: ESA